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Perceptual-cognitive universals
as reflections of the world

ROGER N. SHEPARD
Stanford University, Stanford, California

The universality, invariance, and elegance of principles governing the universe may be reflected
in principles of the minds that have evolved in that universe—provided that the mental princi-
ples are formulated with respect to the abstract spaces appropriate for the representation of bio-
logically significant objects and their properties. (1) Positions and motions of objects conserve their
shapes in the geometrically fullest and simplest way when represented as points and connecting
geodesic paths in the six-dimensional manifold jointly determined by the Euclidean group of three-
dimensional space and the symmetry group of each object. (2) Colors of objects attain constancy
when represented as points in a three-dimensional vector space in which each variation in natu-
ral illumination is cancelled by application of its inverse from the three-dimensional linear group
of terrestrial transformations of the invariant solar source. (3) Kinds of objects support optimal
generalization and categorization when represented, in an evolutionarily shaped space of possi-
ble objects, as connected regions with associated weights determined by Bayesian revision of

maximum-entropy priors.

The ways in which genes shape an individual’s percep-
tual and cognitive capabilities influence the propagation
of those genes in the species’ ecological niche just as much
as the ways in which those genes shape the individual’s
physical size, shape, and coloration. A predatory bird has
come to have not only sharp talons but also sharp eyes,
and a small rodent has come to have not only quick feet
but also quick recollection of the location of its burrow.
Moreover, natural selection favors adaptation to any bio-
logically relevant property of the world, whether that
property holds only within a particular species’ local niche
or throughout all habitable environments. Thus, both the
hawk and the ground squirrel have internalized the pe-
riod of the terrestrial circadian cycle, whose 24-h value
is the same everywhere on earth and whose invariance
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is a consequence of a law—the conservation of angular
momentum—holding throughout the universe.

From among the general properties that characterize the
environments in which organisms with advanced visual
and locomotor capabilities are likely to survive and re-
produce, I here focus on the following three. (1) Material
objects are generally conserved and, when they move
(whether relative to the stable environment or to the self-
moving observer), move in ways whose possibilities and
geometrical simplicities are determined by the three-
dimensional, Euclidean character of physical space. {2) The
light scattered to an eye from an object’s surface linearly
conflates the invariant spectral reflectance properties of
the surface itself and the momentary spectral composi-
tion of the illumination, which is subject to three prin-
cipal degrees of freedom of linear transformation. (3) Ob-
jects that are of the same basic kind and, hence, that have
the same biologically significant potential (e.g., of be-
ing edible, poisonous, predatory, or suited to mating,
parenting, and hence propagation of one’s genes) gener-
ally form a connected local region in the space of possible
objects, despite appreciable differences among individ-
ual objects of that kind in size, shape, position, motion,
or color.

In perceptually advanced mobile organisms, then, genes
that have internalized these pervasive and enduring facts
about the world should ultimately prevail over genes that
leave it to each individual to acquire such facts by trial
and possibly fatal error. If so, psychological science may
have unnecessarily restricted its scope by implicitly as-
suming that psychological principles, unlike the univer-
sal laws of physics, apply at most to the particular ani-
mals that happen to have evolved on one particular planet.
When formalized at a sufficient level of abstraction, men-



tal principles that have evolved as adaptations to princi-
ples that have long held throughout the universe might
be found to partake of some of the generality of those prior
principles (R. N. Shepard, 1987a)—perhaps even attaining
the kind of universality, invariance, and formal elegance
(if not the quantitative precision) previously accorded only
to the laws of physics and mathematics.

My own searches for universal psychological princi-
ples for diverse perceptual-cognitive domains have been
unified by the idea that invariance can be expected to
emerge only when such principles are framed with respect
to the appropriate representational space for each domain.
This idea was inspired, in part, by Einstein’s demonstra-
tion that in extending physical principles beyond the bio-
logically relevant scales of distance, velocity, mass, and
acceleration, invariance could still be achieved—but only
by casting those principles in terms of the appropriate
four-dimensional space-time manifold. Invariance of the
laws of physics was no longer restricted to inertial frames
moving at velocities small relative to the speed of light
(as in Newtonian mechanics, formulated with respect to
three-dimensional Euclidean space), or even inertial frames
moving at any possible (i.e., subluminal) velocity (as in
special relativity, reformulated with respect to [3+1]-
dimensional Minkowsi space). Only when reformulated
yet again, with respect to the appropriately curved, [3+1]-
dimensional Riemannian space, did the laws of physics
finally become (in general relativity) invariant with respect
to arbitrarily accelerated frames. Moreover, the motions
of objects actually observed in the world were then ex-
plained, and explained most accurately (as confirmed,
first, in accounting for the perihelion advance of Mer-
cury’s orbit and, subsequently, in other ways), not in
terms of forces acting instantaneously across arbitrarily
large distances in three-dimensional Euclidean space but
solely in terms of the local geometry of the curved four-
dimensional space-time manifold in the vicinity of the
object itself. The paths of motion (like great circles on
the surface of the Earth) were now simply the geodesics,
the direct analogs of straight lines in the curved four-
dimensional manifold.

But, for such biologically relevant properties of objects
as their positions, motions, shapes, colors, and kinds,
what sorts of representational spaces show promise of
yielding invariant psychological principles? And if such
representational spaces and associated psychological prin-
ciples arose not accidentally but as adaptations to general
properties of the world in which we have evolved, can
an identification and analysis of such sources in the world
point the way toward elegant and invariant formalizations
of the corresponding psychological principles?

REPRESENTATIONS OF AN OBJECT’S
POSITION, MOTION, AND SHAPE

Position, motion, and shape are best considered together
because, from the abstract, geometrical point of view that
promises the most elegant and invariant formulation, the
representations of these three attributes are inextricably
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interconnected. I focus initially and most extensively on
the representations of positions and rigid motions between
positions. Shape I can consider only briefly here, merely
observing that the shape of an object may be understood
in terms of the object’s approximations to all possible sym-
metries, which in turn may be understood in terms of the
object’s self-similarities under all possible rigid motions.

The positions, motions, and shapes that are possible for
an object depend on the kind of space within which that
object is confined. On a biologically relevant scale (of
size, velocity, mass, and acceleration), one of the most
general facts about the world in which we have evolved
is that it is spatially three-dimensional and Euclidean. But
how do we demonstrate that humans or other animals have
internalized the geometry peculiar to this particular type
of space?

The internalization of the circadian cycle was estab-
lished when animals were raised in artificial isolation from
the terrestrially prevailing 24-h oscillation in illumination
and temperature and were found, even so, to maintain a
close approximation to their previous 24-h activity cycle.
(As the old quip has it: ‘“You can take the boy out of the
country, but you can’t take the country out of the boy.””)
Similarly, the three-dimensionality of our world is so
deeply entrenched in our mental makeup that while we
may muse ‘‘If only I had a larger office, I would have
more room for my books,”’ it does not occur to us to think
““If only I had a four-dimensional office, I would have
more degrees of freedom for arranging them!”” The very
universality of the three-dimensionality of our world
precludes our taking ‘‘the boy’’ or, indeed, the girl, the
hawk, or the ground squirrel out of this three-dimensional
‘“‘country,’’ to see whether, in the absence of external sup-
port, any of these creatures would continue to perceive
and to think three-dimensionally. We can, however, in-
vestigate whether an individual, though remaining in
three-dimensional space physically, is able to take an ob-
ject out of that space mentally, when only such a move
could achieve compliance with another deeply internal-
ized principle, such as the principle of object conservation.

Apparent motion, which is typically induced in an ob-
server by alternately presenting two identically shaped ob-
jects in different static positions, provides one means of
exploring this possibility. In the absence of any physically
presented motion, the particular motion that is experienced
must be a direct reflection of the organizing principles
of the viewer’s brain. The Gestalt psychologists, who were
responsible for most of the early studies of apparent mo-
tion (see, e.g., Koffka, 1931, 1935; Korte, 1915; Wert-
heimer, 1912), regarded such organizing principles as
manifestations, in the neurophysiological medium of the
brain, of minimization principles that operate in physical
media generally—much as the spherical shape of a soap
bubble arises from principles of conservation of matter
(the enclosed volume of air) and minimization of surface
area (the enclosing film of soap, with its surface tension).
The uniquely powerful organizing principles of the brain
are not, however, likely to be wholly explained by prop-
erties that grey matter shares with all matter. The neu-
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ronal circuits of the brain (unlike the molecules of such
media as air or soap films) have been shaped by natural
selection specifically to provide a veridical representation
of significant objects and events in the external world.

Apparent Motion Achieves Object Conservation
Why, for example, does one experience a single object
moving back and forth at all, rather than experience what
is actually being physically presented in the laboratory—
namely, two visual stimuli going on and off separately?
Quite apart from questions about the particular type of
movement experienced, the fact that any connecting move-
ment is experienced is presumably the manifestation of
an internalized principle of object conservation. It is sim-
ply more probable in our world that an enduring object
abruptly moved from one position to a nearby position
than that one object suddenly ceased to exist and, at ex-
actly the same instant, a separate but similar object just
as suddenly materialized in another position. Still, if the
benefits of representing objects as enduring entities sup-
port the instantiation of a connecting motion, two ques-
tions remain: Out of the infinity of possible such motions,
which particular motion will be instantiated? What formal
characterization of that psychologically preferred motion
will most elegantly reflect any simplicity, universality,
and invariance of its ultimate source in the world?

Apparent Motion Is Experienced
in Three-Dimensional Space

When identical two-dimensional shapes, such as the
Cooper (1975) polygons adopted for illustration in Fig-
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ure la, are alternately presented in orientationally differ-
ent positions in their common two-dimensional plane, a
single such shape is experienced as rigidly rotating about
a fixed point in that plane (e.g., Farrell & R. N. Shepard,
1981; Robins & R. N. Shepard, 1977; R. N. Shepard,
1981b, 1984). Similarly, when identical three-dimensional
shapes, such as the Shepard-Metzler (R. N. Shepard &
J. Metzler, 1971) objects shown in Figure 1c, are alter-
nately presented in their common three-dimensional space,
a single such object is experienced as rigidly undergoing
a rotational (most generally, a screw-like) motion in that
space (R. N. Shepard, 1984; R. N. Shepard & Judd,
1976; see also Carlton & R. N. Shepard, 1990a).

But what happens if the two alternately presented shapes
are not identical but enantiomorphic—that is, mirror im-
ages of each other, like a right and left hand? Asymmet-
ric shapes cannot be transformed into each other by any
rigid motion confined to the plane or space in which they
reside. They can be brought into congruence there only
by a shape-reversing reflection of one of the two objects
through some line or plane in their two- and three-
dimensional spaces, respectively. Nevertheless, between
mirror-image polygons in the plane (Figure 1b), a rigid
motion is still experienced. But it is necessarily expe-
rienced as a rotation out of the plane, through the three-
dimensional space containing that plane (R. N. Shepard,
1984). Presumably, we perceptually liberate the object
from the two-dimensional plane for two reasons: Having
evolved in a three-dimensional world, we are just as capa-
ble of representing a rigid motion in three-dimensional
space as in a two-dimensional plane. But only the motion
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Figure 1. Pairs of alternately presented visual shapes (polygons like those used by Cooper, 1975, or block models
like those used by R. N. Shepard & J. Metzler, 1971) that give rise to four different types of apparent mo.tion:
(8) a rigid 90° rotation in the picture plane, (b) a rigid 180° rotation out of the plane a.l'ld through three-dimensional
space, (c) a rigid screw displacement in three-dimensional space, and (d) nonrigid motion only.



in three-dimensional space can represent the shape con-
servation that is probable in the world—particularly for
objects like those in Figure 1, bounded by straight edges
or flat surfaces. (This is, incidentally, one reason for our
use of stimuli composed of straight lines. The probability
that an arbitrarily transformed object will give rise to
straight lines in a two-dimensional projection is vanish-
ingly small if nonrigid deformations are allowed. For
curved free-form shapes, apparent motion is often experi-
enced as a nonrigid deformation. Moreover, comparison
of such shapes by mental rotation is far less accurate—see,
for example, Rock, Wheeler, and Tudor, 1989.)

Between enantiomorphic solid objects portrayed as in
three-dimensional space (Figure 1d), however, viewers
never report experiencing a rigid motion. Such a rigid
motion is still mathematically possible—but only by break-
ing out of the three-dimensional space in which we and
our object have been confined, so that we can rigidly ro-
tate the object (now about a plane!) in a surrounding, more
commodious four-dimensional space. Failing to achieve
even a mental liberation from the only space we have
known, we are destined to experience all motions as con-
fined to that three-dimensional space and, hence, all trans-
formations between enantiomorphic shapes as nonrigid.
For shapes of the kind illustrated in Figure 1d, at least
one of the ‘‘arms’’ of the object typically appears to ro-
tate independently, as if connected to the rest of the ob-
ject by some sort of swivel joint (a type of motion that
although less common than globally rigid motion, does
occur in a world biologically enriched with joint-limbed
animals and wind-fractured tree branches).

Similarly, computer-generated projections of actual (as
opposed to merely apparent) rotations of rigid structures
give rise to the *‘kinetic depth’’ perception of rigidity for
arbitrary rotations in three-dimensional space but not for
arbitrary rotations in four-dimensional space (see, e.g.,
Green, 1961; Noll, 1965). These phenomena of real and
apparent motion (as well as related phenomena of merely
imagined motion, such as mental rotation) are consonant
with the Kantian idea that we are constituted to represent
objects and events only in Euclidean space of three (or
fewer) dimensions. The modern evolutionary/mechanistic
explication of this idea must be that the three-dimensional
world simply has not exerted sufficient selective pressures
toward the evolution of the more complex neuronal ma-
chinery that would be required to represent higher dimen-
sional spaces and the additional rigid transformations that
such spaces afford.

Apparent Motion Traverses a Kinematically
Simplest Path

Even when a connecting motion is possible within three-
dimensional space (as in Figure lc), the particular mo-
tion experienced is only one out of infinitely many possi-
ble rigid motions between the two presented positions.
One might be tempted to guess that if apparent motion
is guided by internalized approximations to principles
holding at the biologically relevant scale in the external
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world, the most likely candidates for those external prin-
ciples would be those of prerelativistic, Newtonian me-
chanics. This guess has proved untenable, however, in
the face of several facts:

1. Any rigid motion is compatible with Newton’s laws
of motion, in the presence of arbitrary unseen forces.
Hence, unless we exclude such forces, Newtonian me-
chanics itself provides no basis for the selection of one
path of motion over another.

2. If we do exclude such forces, however, Newton’s
laws constrain an object’s center of mass to traverse a
straight line. But this is contrary to the now well-
established finding that apparent motion tends to be over
a curved path when the two positions in which the object
is alternately presented differ in orientation (see, e.g.,
Bundesen, Larsen, & Farrell, 1983; Farrell, 1983; Foster,
1975; Kolers & Pomerantz, 1971; McBeath & R. N. Shep-
ard, 1989; Proffit, Gilden, Kaiser, & Whelan, 1988).

3. The apparent motions that are most apt to be experi-
enced as well as the real motions that are discriminated
most accurately and judged to be most simple are those
motions whose rotational component is about an axis
determined by the geometry of the object’s visible shape
rather than by the physics of the object’s invisible distri-
bution of mass. In particular, the psychologically pre-
ferred axes of rotation are those of global or local sym-
metry of the shape as in Figure 2a—not the principal axes
of inertia of the object as in Figure 2c (Carlton & R. N.
Shepard, 1990b). (The latter axes are not even directly
determined by the object’s visual shape, and can only be
inferred by making an additional assumption, such as that
the object is of uniform density.) Even an object, such
as a cube, for which all possible rotational axes are iner-
tially equivalent appears to rotate about a fixed axis when
actually rotated about an axis of symmetry, as in Fig-
ure 2b, but appears to wobble when actually rotated about
an axis that (though inertially equivalent) is not an axis
of geometrical symmetry, as in Figure 2d (Shiffrar &
R. N. Shepard, 1990).

4. Human infants reveal sensitivity to essentially geo-
metrical constraints such as continuity, rigidity, and im-
penetrability before manifesting sensitivity to constraints
of physical dynamics based on gravity, mass distribution,
and inertia (Spelke, 1991).

5. Even adults, from Aristotle to present-day college
students, often manifest an *‘intuitive physics’’ that fails
to comply with the constraints of Newtonian mechanics
(McClosky, 1983; Proffitt & Gilden, 1989; Proffitt,
Kaiser, & Whelan, 1990; see aiso R. N. Shepard, 1987a,
pp. 266-267), although in some such cases it may approx-
imate constraints of kinematic geometry (see R. N. Shep-
ard, 1984, 1987a).

6. Abstract geometrical constraints apply to a wider
range of phenomena in the world than do concrete physi-
cal constraints and, for this reason, would presumably
have had more opportunity for internalization through nat-
ural selection (as well as through learning). Things as lack-
ing in mechanical rigidity as a constellation, a curl of
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Figure 2. Axes of geometrical symmetry (a) favored by apparent motion and (b) around which real motion ap-
pears stable and is accurately compared, and nonsymmetry axes of physical inertia (c) avoided by apparent motion
and (d) around which real motion appears to wobble and is less accurately compared. Figures 2a and 2¢ are from
“Psychologically Simple Motions as Geodesic Paths: II. Symmetric Objects,” by E. H. Carlton and R. N. Shepard,
1990, Journal of Mathematical Psychology, 34, p. 208. Copyright 1990 by Academic Press. Adapted by permis-
sion. Figures 2b and 2d are from “Comparison of Cube Rotations About Axes Inclined Relative to the Environ-
ment or to the Cube,” by M. Shiffrar and R. N. Shepard, 1990, Journal of Experimental Psychology: Human Per-
ception & Performance, 7, p. 48. Copyright 1990 by the American Psychological Association. Adapted by permission.

smoke hanging in still air, or a shadow all undergo trans-
formations that (at least over sufficiently short periods of
time) approximate geometrical rigidity relative to a mov-
ing or turning observer (R. N. Shepard, 1984; R. N.
Shepard & Cooper, 1982). As Gibson observed, such self-
induced geometrical transformations of the ‘‘ambient optic
array’’ are probably the most ubiquitous of the transfor-
mations with which the visual systems of highly mobile
animals must cope (e.g., Gibson, 1979). We can under-
stand, then, why apparent motion might be primarily
governed not by the principles of Newtonian mechanics,
but rather by the more abstract and widely manifested con-
straints of kinematic geometry for three-dimensional space
(R. N. Shepard, 1984).

Kinematic Simplicity Is Determined by Geometry
Kinematic geometry is the branch of mathematics char-
acterizing the motions that are geometrically possible and,
among those, the motions that are in a purely geometri-
cal sense most simple or natural—given a geometrical
specification both of the object or set of objects and of

any constraints on its possible motions. The objects may
be geometrically specified to be shape invariant under all
transformations (i.e., rigid). The constraints on their mo-
tions may be geometrically specified to preclude mutual
interpenetration; escape from their particular embedding
space (having specified dimensionality, curvature, and
global topology); or violation of the constraints on their
relative motions imposed by specified mechanical inter-
connections (such as a one-degree-of-freedom hinge or
slider, a two-degrees-of-freedom pivot, a three-degrees-
of-freedom ball and socket joint, etc.). Kinematic geom-
etry says nothing about physical mass, force, accelera-
tion, and hence, nothing about how much and what kind
of effort would be required actually to carry out any par-
ticular specified motion, physically, for any given mass
distribution within each component object (to say noth-
ing of a specification of the friction at each joint or slid-
ing surface, of the density and viscosity of the medium
in which the objects might be immersed, or of how much
and what kind of force can be applied before a physical
component will bend, fracture, or break). The abstract



constraints of geometry are thus conceptually separable
from the more concrete constraints of physics: Questions
of whether a certain large table will fit through a particu-
lar door and, if so, what simple sequence of translations
and rotations of the table will suffice are purely geomet-
rical and quite distinct from questions of how many per-
sons should be recruited for the job, or of which geomet-
rically possible sequences of rigid transformations will
require the least physical effort.

For present purposes, we need consider only the sim-
plest case of the motion of a single rigid object. Even for
this simplest case, full mathematical characterization was
not achieved until the last century (following the develop-
ment of the relevant mathematical apparatuses of group
theory, Lie algebras, quaternions, and differential geom-
etry). Particularly relevant here is Chasles’s (1830) the-
orem of kinematic geometry, according to which any two
positions of an asymmetric shape in three-dimensional
Euclidean space determine a unique corresponding axis
through that space such that the object can be rigidly trans-
ported from either position to the other by a combination
of a linear translation along that axis and a simple rota-
tion about that same axis—that is, by the helical motion
called a screw displacement. In particular cases, the trans-
lational or the rotational component may be null, leaving
only the degenerate screw displacement of (respectively)
a pure rotation, a pure translation, or (if both components
are null) no motion at all.

If the two positions of an asymmetric object are con-
fined to the Euclidean plane, as in Figure 1a, Chasles’s
theorem reduces to Euler’s theorem. The two positions
then determine a unique point in the plane such that the
object can be rigidly carried from either position to the
other by a simple rigid rotation in the plane about that
point. (For generality and elegance, the degenerate case
of pure translation is interpreted, in the abstract mathe-
matical formalism, as a rotation of the object about a
‘‘point at infinity.’’) :

Strictly, what is uniquely determined by the geometry
of the two positions of an (asymmetric) object is the geo-
desic path along which a rigid transformation can carry
the object back and forth between those positions. Alter-
native motions along complementary segments of that
same geodesic may be possible. Thus, a rotation can carry
an object between two positions through either of two
nonoverlapping paths around the same circle. Generally,
apparent motion tends to be experienced over the shorter
of two such alternative paths. But when the presented po-
sitions of the object differ by close to 180°, the two al-
ternatives are of nearly equal length and either motion
may be experienced (see Farrell & R. N. Shepard, 1981;
Robins & R. N. Shepard, 1977). (The case of objects pos-
sessing various symmetries, for which two positions of
the object may be connected by different screw displace-
ments around two or more distinct axes, will be consid-
ered later.) Even when the particular segment of the geo-
desic over which the motion is to be represented has been
determined, kinematic geometry itself does not prescribe
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the time course of that motion—whether it is fast or slow,
accelerating or decelerating, and so forth. In the physical
world, the time course of an actual motion is determined
by physical dynamics, based on the mass distribution and
forces applied. In the mental world, however, I shall argue
that the time course of the motion perceptually experi-
enced in apparent motion or only imagined in mental ro-
tation appears to be primarily determined by other, more
general, invariant, and adaptively critical constraints.

Of course, the screw displacements (including simple
rotations) prescribed by kinematic geometry are not the
only possible motions between two positions of an object
in space or in the plane. There are always infinitely many
possible motions, including infinitely many rigid motions
in which the axes of rotation and translation can vary in
orientation from moment to moment and can depart from
mutual alignment during the motion, as well as infinitely
many more motions that do not preserve the rigid struc-
ture of the object. Natural selection has ensured that
(under favorable viewing conditions) we generally per-
ceive the transformation that an external object is actu-
ally undergoing in the external world, however simple
or complex, rigid or nonrigid. Here, however, I am con-
cerned with the default motions that are internally repre-
sented under the unfavorable conditions that provide no
information about the motion that actually took place be-
tween two successive positions of an object. What I am
suggesting is that when a simple screw displacement or
rigid rotation is possible, that motion will tend to be rep-
resented, because, of all transformations that conserve the
object at the fullest level of shape, it is the geometrically
simplest and hence, perhaps, the most quickly and easily
computed. Certainly, within a general system suitable for
specifying all possible rigid motions, such a motion re-
quires the minimum number of parameters for its com-
plete specification.

Geometry Is More Deeply Internalized
Than Physics

In accordance with Chasles’s theorem, when an asym-
metric shape is alternately presented in two orientation-
ally different positions (as in Figure 1c), under conducive
conditions human viewers generally do report the ex-
perience of a helical motion (R. N. Shepard, 1984). The
“‘conducive conditions’’ are primarily those in which the
temporal interval between the offset of each stimulus and
the onset of the other is short enough to yield a pattern
of retinal stimulation consistent with some (necessarily
rapid) actual motion, and in which the interval between
the onset of each stimulus and the onset of the other is
long enough, in relation to the extent of the geometrically
simplest rigid transformation, to permit completion of the
(necessarily rate-limited) neural computations required for
that transformation. If the two alternately presented po-
sitions of the object are confined to a plane (as in Fig-
ure la), the experienced motion generally reduces to a
simple rigid rotation around a fixed point in the plane,
in accordance with the special case known as Euler’s the-
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orem. This single rigid rotation is geometrically simpler
than the motion prescribed by Newtonian mechanics,
which generally includes two components: a continuous
motion of the center of mass (which is rectilinear in the
absence of external forces), and an independent rotation
about that moving center. Indeed, for a Newtonian mo-
tion in three-dimensional space, the axis of rotation need
not retain an invariant orientation. Even in the absence
of external forces, the axis of momentary rotation will
itself wobble about the moving object’s center of mass,
unless the axis of rotation happens to coincide with a prin-
cipal axis of inertia of the object. Only in the special case
in which the two alternately presented positions of an ob-
ject have identical orientations does the helical motion
prescribed by kinematic geometry coincide with the recti-
linear motion prescribed by Newtonian mechanics. Thus
the “‘intuitive physics’’ revealed by tests involving spa-
tially extended bodies and rotational motions may devi-
ate from classical physics (see, e.g., McClosky, 1983;
Proffitt & Gilden, 1989; Proffitt et al., 1990), because
whatever internalized knowledge of physical dynamics is
tapped by such tests may be contaminated, to a variable
degree across individuals and conditions of testing, by a
more deeply infernalized wisdom about kinematic geom-
etry (R. N. Shepard, 1984, 1987a; see also Freyd &
Jones, in press).
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Mean Departure from a Straight Path
(Degrees of visual Angle at Midpoint)

In the method that McBeath and I introduced for quan-
tifying the extent of the departure of apparent motion from
a rectilinear path, a shape was alternately presented in
different orientations on the left and right of a visual wall
and observers adjusted the vertical height of a window
in the wall so that the object appeared most compellingly
to pass back and forth through that window, which was
just large enough to accommodate the object. Figure 3a
illustrates the two-dimensional display used in the initial
study (see McBeath & R. N. Shepard, 1989).

The obtained height-of-window settings uniformly im-
plied a curvature away from the straight path, in the direc-
tion prescribed by kinematic geometry. As shown in Fig-
ure 3b, for linear separations of up to at least 3° of visual
angle and for orientational differences of up to at least
90° between the alternately presented stimuli—for which
the experience of motion over a particular path was still
strong and well-defined—the settings were remarkably
close to those prescribed by kinematic geometry. Even
for larger separations and angular differences (viz., 180°),
for which the experience of motion became weaker and
less well-defined, the mean settings remained closer to
the circular paths prescribed by Euler’s theorem than to
the rectilinear paths prescribed by Newtonian dynamics
in the absence of external forces. Preliminary indications
of similar deviations from rectilinearity have also emerged
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Figure 3. Depictions of (a) shapes alternately presented in different orientations on the left and right of a wall with a window whose
height could be adjusted so that a single object appeared to pass back and forth through the window, and (b) mean displacements of
the window above the height of a straight path of apparent motion that subjects produced for different linear and angular separations
between the shapes. From “Apparent Motion Between Shapes Differing in Location and Orientation: A Window Technique for Estimat-
ing Path Curvature,” by M. K. McBeath and R. N. Shepard, 1989, Perception & Psychophysics, 46, pp. 334-335. Copyright 1989 by

the Psychonomic Society.



in subsequent unpublished explorations of the three-
dimensional case, where the deviations are generally ex-
pected to be helical rather than merely circular. (For ex-
ample, McBeath, using a computer-generated full-color
stereoscopic display, had viewers position a circular win-
dow anywhere in a two-dimensional wall that appeared
to recede in depth, dividing a virtual room into left and
right compartments within which the two positions of a
three-dimensional object were alternately displayed.)

Object Symmetries Entail Alternative Paths
of Apparent Motion

For an object possessing some symmetry or symme-
tries, different screw displacements may be possible be-
tween two positions of the object about two or more dis-
tinct axes in space. A horizontal rectangular bar in the
plane provides a simple illustration. Such a shape is iden-
tical to itself under 180° rotation (in the plane) about its
center, and under 180° rotations (in space) about either
a vertical or a horizontal axis through its center. As a con-
sequence of these symmetries, when such a bar is alter-
nately presented on the left and right, it may be experi-
enced as rigidly moving over any one of six different paths
along four distinct geodesics between the two presented
positions, and each of these motions is a screw displace-
ment (if we include, as always, the degenerate screw dis-
placements of pure rotation or pure translation).

Along one geodesic, there are two nonoverlapping 180°
rotations in the picture plane around a point midway be-
tween the two positions in which the bar appears, one path
through the upper portion of the plane, the other through
the lower. Along a second geodesic, there are two non-
overlapping 180° rotations in depth about a vertical axis
lying in the picture plane midway between the two pre-
sented positions, one through the three-dimensional space
in front of the plane, the other through the space behind.
In each of these first two cases, the two alternative mo-
tions correspond to the traversal of two complementary
halves of a circular geodesic. Along a third geodesic, two
distinct paths of rectilinear translation in the picture plane
are geometrically possible between the two positions, one
over the short segment of the horizontal line directly be-
tween the two side-by-side positions presented, the other
over the infinitely longer path corresponding to the com-
plementary part of that horizontal line (interpreted as the
complete circle around a ‘‘center at infinity’’). Finally,
along the fourth geodesic, two distinct screw displace-
ments are possible along this same line, one in which the
bar simultaneously translates and rotates 180° about the
short segment of that axis, the other in which the screw
displacement entails (again) an infinitely longer transla-
tional component over the remaining part of the horizontal
line. For these last two geodesics, the longer of the two
paths of possible transformation, being infinitely longer,
is generally not experienced, leaving just six likely paths
of geodesic transformation out of the eight possible.

To obtain experimental evidence that these are the
default paths of transformation between two such horizon-
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tally separated positions of a rectangular bar, Susan Zare
and I primed motions over each of these four paths by
appropriately adding a small symmetry-breaking exten-
sion to each rectangular bar, giving it the suggestion of
one of the four possible L shapes, as shown in Figure 4
(see Carlton & R. N. Shepard, 1990b, pp. 219-221).
With the extension always attached to the upper left corner
of the left bar, the symmetry of the right bar could be
broken by attaching the corresponding extension to its up-
per left, upper right, lower right, or lower left (as shown
in a, b, ¢, and d, respectively, in Figure 4). The appar-
ent motion tended accordingly to be experienced as a recti-
linear translation along the horizontal axis common to the
two rectangles (Figure 4a), as a 180° rotation in depth
about the vertical axis lying in the plane halfway between
the two rectangles (Figure 4b), or (less compellingly, for
reasons soon to be noted) as a 180° rotation in the plane
about the horizontal line-of-sight axis orthogonal to the
plane through a point halfway between the two rectangles
(Figure 4c), or as a 180° screw displacement along the
horizontal axis common to the two rectangles (Figure 4d).

The apparent rotation in the plane (corresponding to
Figure 4c) could also be induced by a form of path-guided
apparent motion (cf. R. N. Shepard & Zare, 1983). A
low-contrast uniform gray static path was briefly exposed
during the 5-msec interval between the offset of each bar
and the onset of the other. The path in this case had the
shape schematically indicated in Figure 4e by the area that

Figure 4. Pairs of alternately presented rectangular bars with
L-like extensions that prime four types of apparent motion: (a) rec-
tilinear translation, (b) rotation in depth about a vertical axis, (c) ro-
tation in the picture plane, and (d) a horizontal screw displacement
about an axis through the two bars. Pairs of bars with briefly pre-
sented interstimulus guiding paths that induce two types of appar-
ent motion: (e) rotation in the picture plane and (f) an up-and-down
translation over and inverted V path. (From unpublished experi-
ments by R. N. Shepard & Zare.)
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(only for purposes of clear black and white reproduction
here) is stipled and much darker than the very light, brief,
uniform grey of the path actually presented.

At a random time, while the appropriate induced mo-
tion was being experienced, the symmetry-breaking ex-
tension (or, alternatively, the faint guiding path) was

deleted from the cycling display of the two rectangular

bars. Under optimal conditions, viewers typically con-
tinued for a few cycles to experience the kinematically
simple motion that had been primed by the preceding ex-
tensions (or guiding path) before reverting to the ex-
perience of either the two most favored default motions—
namely, the pure translation indicated in Figure 4a or the
pure depth rotation indicated in Figure 4b (see Carlton
& R. N. Shepard, 1990b, p. 220).

The reason that the translation and depth rotation were
favored over the rotation in the picture plane (even though
both rotations were through the geometrically equivalent
180° angles) is presumably that transformations of the
former two types were more consistent with the retinally
available information. For an extended bar, the absence
of retinal excitation along any possible connecting mo-
tion is less consistent with a rotation in the picture plane
(Figure 4c), for which an actual motion would have
tended to stimulate fresh retinal receptors along the path,
and more consistent with a translation or a rotation in
depth (Figures 4a and 4b), for which the two presented
positions of the bars extensively overlap the path of mo-
tion. Even if a fleeting motion had actually been a rota-
tion in the plane, the resulting weak excitations along the
path would have been largely masked by the more force-
ful retinal ‘‘burning-in’’ of the bar in its more enduring
end positions.

Conditions Revealing the Default Paths
of Mental Kinematics

As I have already noted, natural selection has favored
neuronal machinery for swiftly representing whatever mo-
tion is actually taking place in the world—not just for rep-
resenting simple screw displacements. But, to perceive
geometrically more complex motions that depart from the
default paths of transformation, two conditions must be
met: the proximal information must unambiguously spec-
ify a more complex distal motion, and the information
must impinge on the sensory surface at a rate that does
not outstrip the rates of propagation and processing of the
neuronal system behind that surface (a system that evolved
in a pretechnological world in which most biologically
relevant motions were presumably of relatively limited
velocity).

Even apparent motion can be induced over a path that
does not correspond to a kinematically simple screw dis-
placement. Under appropriate conditions, brief interstimu-
lus presentation of the path schematically illustrated in Fig-
ure 4f, for example, can induce a nonrotational experience
of the bar translating upward, reversing, and translating
back downward in a bouncing inverted-V trajectory be-
tween the left and right bar positions. But when the rate

of alternation is increased just to the point at which the
interval between stimulus onsets (the stimulus-onset asyn-
chrony, or SOA) becomes too brief for the internal enac-
tion of this kinematically complex motion, the experience
tends to revert to the rigid rotation in the plane correspond-
ing to the path depicted in Figure 4e. Presumably, this
simple rotation is favored at the shorter SOA because it
is the only default motion for which the presented path
(Figure 4f) provides approximate—although not perfect—
support. With further reduction of the SOA (or with de-
letion of the guiding path), the motion usually reverts,
once again, either to pure translation or to pure rotation
in depth.

From the standpoint advocated by Gibson (1979), ap-
parent motion may seem lacking in ecological validity in
a world in which material objects do not go discontinu-
ously in and out of existence. Yet, even in a natural en-
vironment, significant objects may be only intermittently
visible—as when they are behind wind-blown foliage, for
example. One’s life can then depend on whether two fleet-
ing visual sensations are interpreted as a single predator
moving left to right, or as two distinct objects, one sta-
tioned on the left and one stationed on the right. In the
laboratory, moreover, the default motions that are ex-
perienced in the absence of external support are just the
ones that reveal, in their most pristine form, the internal-
ized kinematics of the mind and, hence, provide for the
possibility of an invariant psychological law.

The Emergence of Invariant Laws in
Representational Space

Under appropriate conditions, the minimum time re-
quired for representation of a rigid motion between two
positions of a stimulus has characteristically increased in
an essentially linear manner with the magnitude of the spa-
tial disparity of those positions. Thus, in the case of visual
apparent motion, the SOA yielding the experience of a
rigid transformation over a connecting path increases ap-
proximately linearly with the linear separation between
the alternately presented stimuli (see, e.g., Corbin, 1942
[see R. N. Shepard, 1984, Figure 5]; Miller & R. N.
Shepard, 1993) or, when the stimuli differ in orientation,
with the angular difference between them (R. N. Shepard
& Judd, 1976). Similarly, in the case of mental rotation,
the time required to determine whether two objects are
identical in shape (as opposed to enantiomorphic) in-
creases approximately linearly with the angular difference
in their orientations (see, e.g., Cooper, 1975, 1976; R. N.
Shepard & J. Metzler, 1971). (For overviews of many
of the results that have been obtained both for apparent
and imagined motion, see, e.g., Cooper & R. N. Shepard,
1984; R. N. Shepard & Cooper, 1982; and for an over-
view of a related phenomenon of *‘representational mo-
mentum,’’ see Freyd, 1987.)

Several facts indicate that the slopes of these linear in-
creases of time with distance are not determined by
characteristic speeds with which corresponding objects
move in the world. There do not seem to be any well-



defined characteristic speeds: a bird may perch on a limb
or swoop past, a stone may rest on the ground or be
hurled. The apparent motion of an object can be ex-
perienced before the object itself has been identified as
a type likely to move quickly or not at all (e.g., a mouse
vs. a stone). An object’s velocity relative to the observer
must, in any case, depend on the observer’s own motion.
Finally, the obtained slopes of the chronometric functions
have generally depended much more on the type of task
than on the type of objects presented, with fastest trans-
formational rates found for apparent motion (R. N. Shep-
ard & Judd, 1976), slower rates for mental rotation (R. N.
Shepard & Cooper, 1982; R. N. Shepard & J. Metzler,
1971), and, within mental rotation tasks, slowest rates
when two externally presented objects are to be compared
(R. N. Shepard & J. Metzler, 1971) or when the objects
are unfamiliar (Bethell-Fox & R. N. Shepard, 1988),
rather than when an externally presented object is to be
compared with an internally represented, already well-
learned canonical object (Cooper, 1975, 1976; S. Shepard
& D. Metzler, 1988).

Again, invariant laws require formulation in terms of
more abstract regularities in the world. Neither the path
over which an apparent motion is experienced nor the crit-
ical time required for the traversal of that path suggests
a concrete simulation of the physically or biologically most
probable motion of that particular object in that particu-
lar circumstance (R. N. Shepard, 1984). Rather, natural
selection seems to have favored the establishment of the
identity (or nonidentity) of the two objects in the fastest
possible way that preserves whatever is invariant in the
structure of the object. Evidently, the fastest possible way
for objects in three-dimensional space is via the simplest
transformation permitted by the corresponding kinematic
geometry of that space. Differences among the rates esti-
mated in the different tasks may not so much reflect dif-
ferences in typical behaviors of the objects presented as
they do differences in the demands on and external sup-
ports for internal computations in those tasks.

The formulation of an invariant chronometric law of
linear increase of time with distance requires, of course,
that we choose the psychologically appropriate definition
of distance. Both for imagined transformation (R. N.
Shepard & J. Metzler, 1971) and for apparent motion
(e.g., Attneave & Block, 1973; Corbin, 1942; Ogasawara,
1936; R. N. Shepard & Judd, 1976), the appropriate dis-
tance evidently is the extent of the relevant transforma-
tion in the three-dimensional world more than any dis-
tance on the two-dimensional retina. Moreover, invariance
is not achieved by defining distance solely in terms of the
two objects between which a rigid motion is to be imag-
ined or experienced. Invariance can only be achieved rel-
ative to the particular path of motion mentally traversed
or experienced on a given occasion, e.g., out of all alter-
native paths that are also permitted by the symmetries of
the particular object presented (Farrell & R. N. Shepard,
1981; J. Metzler & R. N. Shepard, 1974 [Figure 16];
R. N. Shepard & Zare, 1983).
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An invariant chronometric law finally becomes possible
when critical times are related to distances along the ap-
propriate geodesic paths in the appropriate representa-
tional space. The rate of traversal of such a path is not
invariant across different tasks, because natural selection
has favored neuronal machinery that yields the fastest pos-
sible computation, given the external support available,
but the external support varies from situation to situation.
Even for the same task, the rate is not invariant across
different geodesic paths, because no global metric (but
only what is called the connection—see Carlton & R. N.
Shepard, 1990a) can be established for the full space of
possible positions. (In terms of the formal structure of
kinematic geometry, this can be understood by consider-
ing that any finite rotation, however small, must domi-
nate any finite translation, however large, because any
finite translation is abstractly equivalent to an infinitesimal
rotation about a ‘‘center at infinity’’—Carlton & R. N.
Shepard, 1990a.) For any one given path in the space of
possible positions, the linearity of transformation time
nevertheless becomes an invariant by virtue of the addi-
tive nature of times of analog traversal through succes-
sive points along that geodesic. I turn now to a formal
characterization of the abstract representational space of
possible positions and the geodesics that I take to repre-
sent the default paths of apparent or imagined motions.
It is best to develop such a characterization first for the
case of an idealized asymmetric object, and then for the
cases of an object’s possessing or approximating various
symmetries.

The Manifold of Positions of Asymmetric
Objects, and Its Geodesics

Objects in three-dimensional space have three degrees
of freedom of translation and, except for surfaces of revo-
lution (such as a perfect cylinder, which has an axis of
complete rotational symmetry), three additional degrees
of freedom of rotation. The complete specification of the
position of an asymmetric object at any given moment re-
quires, therefore, the specification of six independent
quantities, three for its location and three for its orienta-
tion. (Specification of the orientation of a rotationally sym-
metric ideal cylinder, in contrast, requires only two quan-
tities rather than three, because all angular orientations
about its central axis are indistinguishable.) Any rigid
motion of an asymmetric object over time thus cor-
responds to the traversal of a one-dimensional path in an
abstract six-dimensional space of the object’s distinguish-
able positions. Moreover, because rotation of any object
through 360° returns it to its original position, the three
dimensions of orientation are all circular. The abstract
six-dimensional space as a whole is accordingly curved
and non-Euclidean.

Despite its globally curved, non-Euclidean structure,
this six-dimensional space is approximately Euclidean in
each local neighborhood—much as the surface of the
earth, although globally spherical, approximates a flat
Euclidean plane within each sufficiently small region (cor-
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responding, for example, to a single state or country).
Spaces that thus approximate Euclidean space in each lo-
cal neighborhood but may have a globally curved struc-
ture are called manifolds. The six-dimensional manifold
of object positions has a particular mathematical struc-
ture (called, again, its connection) such that the paths in
the manifold prescribed by kinematic geometry are the
geodesics—the analogs, for a curved space, of straight
lines in Euclidean space. (For successive stages in the de-
velopment of these ideas in connection with the percep-
tual representation of positions and motions of objects,
see Foster, 1975; R. N. Shepard, 1981b, 1984; R. N.
Shepard & Farrell, 1985; and, most fully, Carlton &
R. N. Shepard, 1990a, 1990b.)

Geodesics are the one-dimensional curves in a manifold
that are most simple and uniform in that like straight lines
in Euclidean space, the entire curve can be generated by
iteratively applying the same local translational operation
that carries any point on the curve into a nearby point on
the curve, thus extending the curve in the most natural
way. For the geodesics on the surface of a sphere (the
great circles), for example, a step in the direction that
takes one from a point to a nearby point on the geodesic
will, with sufficient iteration, take one clear around the
circle; equivalently, a straight tape smoothly applied to
the surface in the local direction of the curve at any point
will eventually return to that starting point, having cov-
ered the entire great circle.

As a reflection of the intimate connection between po-
sitions and motions that I mentioned at the outset, the set
of distinguishable positions of an asymmetric object and
the set of rigid displacements of such an object are
representable by the same manifold. Once we have se-
lected any one position of an asymmetric object as its ca-
nonical reference position, application of any screw dis-
placement (whose rotational component does not exceed
360°) will carry the object into a unique position, and
every possible position can be obtained in this way. The
correspondence between distinguishable positions and
screw displacements is not strictly one-to-one, however.
As already remarked, for two objects differing only in
orientation, there are two distinct rotations, which will
carry one into the other around complementary segments
of the geodesic circle. I shall soon return to the conse-
quences of this for the structure of the manifold.

Formal Characterization in Terms of
Group Theory

The structure of the set of positions of an object, the
set of rigid displacements of the object, and the cor-
responding manifold with its geodesics can be elegantly
formulated in terms of group theory. A group is a set of
elements, which in the present case would correspond to
rigid displacements of an asymmetric object in space, that
meet the following four conditions:

Closure. To any ordered pair of elements from the set
there is a uniquely corresponding single element, called

their product, that is also a member of the set. (Thus, for
the two screw-displacement transformations, T, and T,,
there is a single such transformation, T, that carries the
object to the same position as the transformation T, fol-
lowed by the transformation T,: T,-T, = T;.)

Associativity. An ordered subset of three elements cor-
responds to the same product element whether a partial
product is first formed from the first two elements or from
the last two elements, before forming a final product with
the remaining element . (Thus, for the ordered set of trans-
formations, T, T, and T;: (T{-T.)]-Ts = T,-[T;-Ts}.)

Existence of identity element. The set of elements con-
tains a unique element whose product with any given ele-
ment is just that given element. (Thus the degenerate trans-
formation, here denoted 1, that leaves the position of an
object unchanged has no effect beyond the effect of any
given transformation, T,, that it precedes or follows:
T,-1=1T, =Ty.)

Existence of inverse. For every element in the set, there
is a unique element in the set, called its inverse, such that
the product of the element and its inverse is the identity
element. (Thus, for every transformation, T,, there is a
compensating inverse transformation, T,’, that restores
the object to its initial position: T,-T,” = 1.)

A familiar example of a group is the set of integers
(positive, negative, and zero) under addition. The group-
theoretic ‘‘product’’ in this case is simply the (algebraic)
sum of any two integers. Clearly, we have associativity:
(a+b)+c = a+(b+c); an identity element (zero); and
an inverse for any element n (namely, the integer —n).
As already implied, the set of elements of a group has
dual interpretations—as the set of operations (e.g., the set
of continuous displacements in space, or the set of dis-
crete displacement along the number line by addition of
positive or negative integers), or as the set of objects ob-
tainable from a canonical element by those operations
(e.g., the set of positions of an object in space obtainable
by rigid displacements from a reference position, or the
set of integers obtainable by integer shifts from—i.e., al-
gebraic additions to—a reference integer, such as zero).

The relevant group for the representation of distinguish-
able positions or rigid displacements of an asymmetric
object in three-dimensional Euclidean space is the Euclid-
ean group, E*. (The ‘‘+"’ is used here to indicate the re-
striction to rigid transformations confined within the three-
dimensional space, thus excluding reflections between
enantiomorphic shapes, such as a left and right hand, that
could otherwise be obtained by rigid rotation through a
higher dimensional embedding space.) Because a general
screw displacement includes a translational and rotational
component, the Euclidean group is composed of the group
of linear translations and the group of orthogonal rota-
tions. In group-theoretic terms (see Carlton & R. N.
Shepard, 1990a), E* is expressible as the semidirect prod-
uct of the three-dimensional translation group, R?, and
the three-dimensional rotation group SO(3):

E* = R*®S0(3). §))



The manifold of distinguishable positions (or, equiva-
lently, rigid displacements) of an asymmetric object in
three-dimensional space is isomorphic to the Euclidean
group, E*.

The concept of the product of two groups may be clar-
ified by considering the simpler product of the group of
rigid translations along a line (or, in the discrete case,
the group of integers under addition) and the group of rigid
rotations about a circle (or, in the discrete case, the group
of positive clock-face integers or months of the year 1
through 12, modulo 12). Each of the elements of the direct
product of these two groups is composed of one element
from each of the two component groups (where either ele-
ment can be the identity element). The direct product of
such a rectilinear and circular group is, naturally enough,
a cylindrical group. Elements of such a group, by virtue
of their rectilinear and circular components, can take us
from any point on the surface of the cylinder to any other.
In such a direct product group, the elements are commuta-
tive; that is, the product of two elements is independent
of their order so that from a given point on the surface
of a cylinder, we get to a given other point whether we
first translate the appropriate distance parallel to the axis
of the cylinder and then rotate through the appropriate
angle about that axis or whether we first rotate through
that angle and then translate over that distance.

In the case of a semidirect product group, however, not
all elements will commute in this way. The Euclidean
group is necessarily a semidirect product group because
rotations in three-dimensional space are generally non-
commutative: for an asymmetric shape such as the letter
b, for example, the result of rotations of first 90° clock-
wise in the picture plane (&) and second 180° around a
vertical axis (7o) is different from the result of the same
rotations performed in the reverse order—first 180° around
a vertical axis (d) and second 90° clockwise in the pic-
ture plane (&). (A more complete account of semidirect
products is provided by Carlton & R. N. Shepard, 1990a.)

Each subgroup of a group, such as the subgroup of pure
translations IR? and the subgroup of pure rotations SO(3)
of the Euclidean group E*, individually satisfies the al-
ready-stated conditions for a group. The Euclidean group
also contains other, more restricted subgroups, includ-
ing, as just two examples, the group of translations along
a horizontal axis of three-dimensional space, or the group
of rotations about a vertical axis of that space.

Of greatest relevance, here, is the set of one-parameter
subgroups of the Euclidean group. These correspond to
the geodesics in the manifold of distinguishable positions
and are straight lines in the three-dimensional translation
subgroup IR?, great circles in the three-dimensional rota-
tion subgroup SO(3), and, more generally, helical curves
in the full six-dimensional Euclidean group E*. (The des-
ignation of these subgroups as ‘‘one-parameter’’ cor-
responds to the fact that a single parameter suffices to
specify a location along a one-dimensional geodesic.) In
an analogous but more easily imagined, lower dimen-
sional, and direct-product case, a tape started at an arbi-
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tray angle will wind helically around the surface of a cyl-
inder, which also has a straight (axial) component, the
analog of IR?, and circular (angular) component, the ana-
log of SO(3).

For pure rotations of an object in space, we need con-
sider only the great-circle geodesics in the three-dimen-
sional submanifold corresponding to SO(3). Figure 5 il-
lustrates, by means of the orientations of a labeled cube,
a two-dimensional section through this submanifold. The
portrayal of this submanifold as a flat disk is only for the
convenience of illustration in a flat picture. The intrinsic
metric of this two-dimensional submanifold is actually that
of a spherical surface, thus providing for the great-circle
shapes of the geodesics (see Carlton & R. N. Shepard,
1990a). Moreover, diametrically opposite points around
the perimeter of the disk correspond to the same orien-
tation of the object (as shown in the figure by agreement
in orientations of the letter B on the back of the cube)
and such pairs of points, although widely separated in
the figure, should be regarded as the same point.

We are now in a position to clarify further the relation
between the spatial representation of distinguishable po-
sitions of an asymmetric object and the representation of
its rigid displacements. The hemispherical surface illus-
trated, in flattened form, in Figure 5 includes points cor-
responding to rotations of only up to 180° from the orien-
tation of the cube represented by the central point (with
the F-marked face upright and in front) taken as its ca-
nonical orientation. This is sufficient for the representa-
tion of all distinguishable orientations falling on geodesics
in this surface, because, for every rotation through more
than 180° (the longer way around a geodesic circle in this
surface), there is a rotation through less than 180° (the
shorter way around that circle) that is included in the sur-
face and that results in exactly the same orientation of the
object. So, although the two possible transformations (the
longer and shorter ways around the circle) are distinct,
the results of these two transformations are identical. For
the complete representation of the three-dimensional sub-
group of distinct rotations, SO(3), then, each two-dimen-
sional hemispherical section, such as that illustrated in
Figure 5, must have its missing half added, to form a com-
plete sphere. In the complete manifold of rotations, then,
diametrically opposite points correspond to distinct rota-
tions (the shorter or longer ways around the same geo-
desic circle), but, in the corresponding manifold of dis-
tinguishable positions, such diametrically opposite points,
because they correspond to indistinguishable orientations,
are identified (treated as the same point). (Counterintui-
tively for us, who have evolved to deal with macroscopic
objects, such an identification is not needed for an im-
portant class of microscopic objects—viz., fermions, which
include such basic constituents of matter as electrons, pro-
tons, and neutrons. As was first called to my attention by
Eddie Oshins, according to an empirically verified predic-
tion of quantum mechanics, these particles do not become
physically identical to themselves until rotated through
two complete 360° turns!)
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Figure 5. Flattened depiction of one two-dimensional section through the three-
dimensional manifold, SO(3), of orientations of a marked cube. From “Representa-
tion of the Orientations of Shapes,” by R. N. Shepard & J. E. Farrell, 1985, Acta
Psychologica, 59, p. 109. Copyright 1985 by Elsevier Science Publishers. Reproduced

by permission.

Formal Characterization of Positions and
Motions for a Symmetric Object

An object possessing one or more symmetries entails
a modification of the manifold of distinguishable positions.
By definition, whereas an asymmetric object becomes dis-
tinguishable from itself under a rotation through any non-
zero angle short of 360°, a symmetric object becomes
identical to itself under some other rigid transformation,
such as an 180° rotation in the case of a rectangle. Con-
sequently, some widely separated points of the manifold
of distinguishable orientations for an asymmetric object
(such as the points corresponding to 180°-different orien-
tations of the asymmetric polygon in Figure 6a) must be
mapped into the same point of the manifold of distinguish-
able orientations of a symmetric object (such as the single
point corresponding to any two 180°-different orientations
of the centrally symmetric polygon in Figure 6c). As il-
lustrated at the bottom of the figure, the great circle cor-
responding to one complete picture-plane rotation of the
asymmetric polygon (Figure 6a) is thus twisted (through
the intermediate curve shown in Figure 6b) into a double-
wound circle (Figure 6¢) in which each pair of orienta-
tions of the polygon separated by 180° maps into the same
point (R. N. Shepard, 1981b; R. N. Shepard & Farrell,
1985). One complete 360° rotation of a centrally sym-

metric object (like the polygon in Figure 6¢) is thus rep-
resented by two complete excursions around a geodesic
circle in the space of distinguishable positions of that ob-
ject (the circle depicted at the bottom of Figure 6c).

For an object possessing a symmetry, the submanifold
of orientations is necessarily replaced by a quotient mani-
Jfold. Designating these manifolds by the names of their
corresponding groups, we can more specifically say that
the manifold SO(3) is replaced by

SO(3)/5(0), €3

where S(O) is the manifold corresponding to the symmetry
group of the object (see Carlton & R. N. Shepard, 1990b).
The symmetry group of the object is, simply, the sub-
group of rigid transformations that leaves the object in-
distinguishable from its initial state. Thus the symmetry
group of the square is a subgroup of the Euclidean group
that includes rotations through 90° and 180° in the plane,
as well as 180° rotations in space about vertical, hori-
zontal, and diagonal axes of the square.

Quantitative evidence from a number of experiments,
including experiments on real and merely imagined motion,
as well as experiments on visual apparent motion, now
indicates that psychologically preferred paths of rigid trans-
formation do correspond to geodesics in the appropriate



a

Asymmetric

Intermediate

(3601
o

PERCEPTUAL-COGNITIVE UNIVERSALS 15

b C

Symmetric

J

Figure 6. Illustrative polygons (above) and their corresponding geodesic paths
of rotation in the picture plane (below) for three degrees of approximation to
central symmetry: (a) 0%, (b) 75%, and (c) 100%. From “Psychophysical Com-
plementarity,” by R. N. Shepard, 1981. In M. Kubovy & J. Pomerantz (Eds.),
Perceptual Organization, p. 317. Hillsdale, NJ: Lawrence Erlbaum. Copyright
1981 by Lawrence Erlbaum Associates. Adapted by permission.

manifold—including the appropriate quotient manifold
SO(3)/S(0O) for objects with various symmetries (e.g.,
Farrell & R. N. Shepard, 1981; R. N. Shepard, 1981b;
Shiffrar & R. N. Shepard, 1990, see also Carlton & R. N.
Shepard, 1990b, pp. 219-221). As will be noted, such
manifolds and geodesics can even be recovered by apply-
ing methods of multidimensional scaling to psychologi-
cal data.

Formal Characterization for Approximations
to Various Symmetries

Most of the objects that we encounter in the world are
neither completely asymmetric nor exactly symmetric. In-
stead, they more or less approximate various global or
merely local symmetries. Just as a strict symmetry of an
object corresponds to the transformation (rotation or
reflection) that carries that object exactly into itself, a sym-
metry that is only approximate corresponds to the trans-
formation that achieves a local maximum of correlation
in shape between the object and itself—with the degree
of approximation measured by the magnitude of the cor-
relation at that local maximum. Only a perfect sphere is
identical to itself under every rotation and reflection about
its center and, hence, is wholly symmetric. (Thus there
is a more abstract, purely geometrical basis of the spher-
ical shape of the soap bubble invoked by the Gestalt psy-
chologists.) A person’s face, body, and brain only approx-
imate but do not achieve strict bilateral symmetry.

Complete asymmetry, on the other hand, can never be
attained. Any shape (including the ‘‘random’’ polygon in
Figure 6a) necessarily resembles itself to greater or lesser
degrees under various angles of relative rotation. (Hence,
the perfect circle depicted below that polygon does not
precisely correspond to the internal representation of the
set of distinguishable orientations of that particular poly-
gon. Strictly, that circle is a kind of average representa-
tion of possible orientations for a total ensemble of poly-
gons generated by the same random rules.)

Indeed, the shape of any particular object can be de-
fined in terms of its degrees of approximation to all pos-
sible symmetries of that object, via the correlation be-
tween the object and itself under each possible rotation
and reflection (R. N. Shepard, 1981b, 1988). Although
degrees of approximation to symmetries thus appear to
be fundamental in human perception and cognition, the
classical development of the group-theoretic basis of sym-
metry in mathematics has treated each type of symmetry
as a discrete feature that an object possesses either wholly
or not at all.

A formal, quantitative treatment of approximations to
symmetries can, however, be given in terms of represen-
tational space (Carlton & R. N. Shepard, 1990b; Farrell
& R. N. Shepard, 1981; R. N. Shepard, 1981b, 1988;
R. N. Shepard & Farrell, 1985). Approximations to sym-
metries are regarded as inducing deformations in the origi-
nal manifold of distinguishable orientations corresponding
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to SO(3), for an ideally asymmetric object (or ensemble
of random objects), toward the manifold, corresponding
to SO(3)/5(0), for each type of symmetry that a given
object approximates.

Farrell and I sought empirical support for such a spatial
representation of the orientations of polygons possessing
various degrees of approximation to central symmetry—
that is, to self-identity under 180° rotation in the two-
dimensional plane. The minimum SOAs for the experience
of rigid rotational motion between two alternately pre-
sented orientations (Farrell & R. N. Shepard, 1981) and
the times required for the discrimination of sameness or
difference of two simultaneously presented orientations
(R. N. Shepard & Farrell, 1985) were both consistent with
the representations of these shapes in their corresponding
manifold of distinguishable positions (see Carlton & R. N.
Shepard, 1990b; R. N. Shepard, 1981b). Specifically, mul-
tidimensional scaling of the discrimination times (using
the INDSCAL method of Carroll & Chang, 1970) yielded
points in four-dimensional space falling close to the par-
ticular geodesics prescribed (R. N. Shepard & Farrell,
1985)—namely, closed curves forming the edge of a one-
sided Mobius band (as illustrated in two-dimensional projec-
tion at the bottom of Figure 6b); and the minimum SOAs
for rigid apparent motion were as predicted for motions
between the two alternately presented orientations over
just these geodesic paths (Farrell & R. N. Shepard, 1981).

Formal Connections Between the Representations
of Positions, Motions, and Shapes

That the same manifold can represent both the distin-
guishable positions of an object in space and the possible
rigid displacements of the object between its distinguish-
able positions holds also for objects that approximate var-
ious symmetries. This is the basis of the inextricable con-
nection noted between the representations of the positions
and kinematically simplest motions of an object. Shapes,
however, can have many more than six degrees of free-
dom. Clearly, then, shapes cannot be fully represented
as individual points in the manifold of positions/displace-
ments, a manifold that has no more than six dimensions
(and fewer, for objects, such as a cylinder or a sphere,
with complete rotational symmetries). An isomorphism
does nevertheless hold between the shape of any object
and the conformation of the corresponding manifold of
positions/displacements for that object. The conformation
is dictated by the object’s degrees of approximation to all
possible symmetries (R. N. Shepard, 1981b, 1988).

Ultimately, shapes themselves should be formally repre-
sentable as points in a higher dimensional manifold of all
possible shapes. The full development of such a represen-
tation must provide for a detailed, parametric character-
ization of the degrees of approximation of a shape to pos-
sible symmetries in three-dimensional Euclidean space.
Just as the position of any given object can be represented,
historically, as the result of the simplest rigid transfor-
mation that might have carried the object into its given
position from a prespecified canonical position, the shape

of any given object might be interpreted, historically, as
the result of the simplest nonrigid deformation that might
have brought the object into its present shape from some
prespecified, simplest canonical shape.

Leyton (1992) has achieved significant progress toward
a group-theoretic account of how objects may be perceived
and represented in terms of the derivational history that
each implies. In the spirit of the approach that I have out-
lined here, the appropriate representational space might
provide, in general, for the interpretation of any object
as having emerged from some more symmetrical, canon-
ical progenitor through the traversal of a symmetry-
breaking geodesic in that space. Unlike the manifold of
positions and rigid motions, the space of possible shapes
and nonrigid motions would be not only higher dimen-
sional but also anisotropic and inhomogeneous. In a pos-
sible, though remote, analogy with general relativity, for
which a test particle follows a geodesic toward a gravita-
tional singularity in the space-time manifold, the cogni-
tive interpretation of a given shape might be regarded as
following a geodesic backward toward a point of maxi-
mum symmetry (and, perhaps, minimum entropy) in the
manifold of possible shapes.

REPRESENTATION OF AN OBJECT’S COLOR

The problem of color has inspired major efforts by some
of the greatest scientists of all times, including Newton,
Young, Helmholtz, Maxwell, and Schridinger, to name
Jjust a few of the most illustrious physicists. So much at-
tention to color might seem difficult to justify from an
evolutionary standpoint. The perception and representa-
tion of the positions and motions of objects in space is
clearly essential for our survival and reproduction. But
the perception and representation of colors, though doubt-
less contributing to our discrimination of some biologically
relevant objects (such as red berries against green leaves)
and our recognition of or learned attachment to others
(such as a face with blue, green, or brown eyes, or sur-
rounded by yellow, red, brown, or black hair), evidently
is not essential for many animals, including humans.

Originally, the investigation of color was probably moti-
vated, instead, by the challenge of reconciling the seem-
ingly unanalyzable subjective experience of colors with
such seemingly colorless concepts of physical science as
space, time, particles, or waves—including the electro-
chemical events in what has aptly been styled ‘‘the dark
chamber of the skull’’ (as by B. P. Browne, quoted in
William James, 1890/1950, p. 220). The challenge re-
mains (Shepard, 1993), and it is even augmented by the
need to provide an evolutionary explanation for the ways
in which the internal representation of colors differs from
the physical characteristics of external surfaces and of the
electromagnetic radiations that they reflect in the world.

In this regard, two facts about the human perception
of an object’s color are perhaps most fundamental: First,
the color appearance of an object’s surface is essentially
invariant despite enormous variations in the spectral com-



position of the light that falls on that surface and, hence,
of the light that the surface scatters back to our eyes. Sec-
ond, although these physical variations are also potentially
of high dimensionality, we can match the color appear-
ance of any such surface by adjusting just three chromatic
components produced by a suitable color mixing appara-
tus. The color appearances of surfaces thus correspond to
relatively fixed points in a three-dimensional color space.

Schematically, this color space can be thought of as ap-
proximating the idealized spherical solid portrayed in Fig-
ure 7. We can describe this space either in terms of three
cylindrical coordinates of lightness, hue, and saturation
(as shown in Figure 7a), or in terms of three rectangular
coordinates of lightness-versus-darkness, redness-versus-
greenness, and blueness-versus-yellowness (as indicated
in Figure 7b). But what in the world is the source of the
three-dimensionality of this color representation? And
what in the world is the source, in this representation,
of the circularity, discovered by Newton, in the continuum
of hues? For this circularity presents us with the psycho-
physical puzzle that the hues corresponding to the most
widely separated of the visible physical wavelengths,
namely red and violet, appear more similar to each other
than either does to a hue of intermediate wavelength, such
as green.

As before, the answers that may first spring to mind
may not necessarily be the correct ones. In the case of
motion, the most deeply internalized constraints evidently
are determined less by Newtonian mechanics and the mass

distribution of each object than by the more abstract .

kinematic geometry of three-dimensional Euclidean space
and the symmetry groups of objects. Similarly in the case
of color, I suggest that the three-dimensionality and cir-
cular structure of the representation derives less from any-
thing in the intrinsic spectral characteristics of surfaces
or of their reflected light than from the more abstract con-
straints of the universally linear way in which illumination
from an invariant stellar source is transformed by a plane-
tary environment, and the prevailing three-dimensional
structure of the planetary transformations. I begin with
a consideration of the universal linearity of spectral trans-
formation and the selective pressure toward its internal
representation in diurnal animals with highly developed
visual systems.

Formal Characterization of the Linearity
Underlying Color Constancy

The invariant physical characteristic of a surface under-
lying its perceived color is its spectral reflectance func-
tion S*(N). This function specifies, for each wavelength
M of incident light, the fraction of that light that will be
scattered back to any receptive eyes. Accordingly, the
amount of light reaching an eye from a point x on an
environmental surface, P*()), is expressible as the prod-
uct of the amount of light of that wavelength in the am-
bient illumination, E(A), and the spectral reflectance of
the surface for that wavelength at point x, S*(\):

PN = EVSTONY 3
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Figure 7. Schematic illustrations of human color space showing
(a) its three cylindrical dimensions of lightness, saturation, and hue,
and (b) its three opponent-process rectangular dimensions of light-
dark, red-green, and blue-yellow. From “The Perceptual Organiza-
tion of Colors: An Adaptation to the Regularities of the Terrestrial
World?” by R. N. Shepard, 1992. In J. Barkow, L. Cosmides, and
J. Tooby (Eds.), The Adapted Mind: Evolutionary Psychology and
the Generation of Culture, p. 497. New York: Oxford University Press.
Copyright 1992 by Oxford University Press. Adapted by permission.

Empirical data and theoretical considerations (concerning
universal quantum mechanical interactions between photons
and surface molecules), reviewed by Maloney (1986), in-
dicate that the spectral reflectance functions $* of wave-
length for natural surfaces can be approximated as linear
combinations of a small number, n, of reflectance basis
Sfunctions:

S N = LaiSin (4a)
j=1
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where o] is the weight for the jth of the n-basis reflec-
tance functions for surface point x (see also Brill, 1978;
Buchsbaum, 1980; Silstrom, 1973).

Other empirical data and theoretical arguments (to
which I shall return) indicate that the spectral distribu-
tions E for natural conditions of illumination can simi-
larly be approximated as linear combinations of a small
number, m, of lighting-basis functions:

m
EN = Y &EN (4b)
i=1
where ¢; is the weight for the ith of the m-basis lighting
functions for the ambient illumination (see Maloney &
Wandell, 1986).

Substitution of Equations 4a and 4b into Equation 3 then
yields a dimensionally reduced linear model governing
the way illumination and surface properties are combined
in the proximal stimulus P*. Figure 8 is my schematic
illustration of how the spectral composition of the light
scattered to the eye from a surface (here, a green leaf)
differs between two conditions of terrestrial filtering of
the illumination, in which a cloud moves to block the
longer wavelength (redder) rays direct from a setting sun
(T,), or to block the shorter wavelength (bluer) rays scat-
tered from the molecules of air (T,). In either case, the
distribution of the unvarying solar light (U) is linearly
transformed (UT) by the spectral distribution of the mo-
mentary terrestrial condition of filtering (T, or T), and
that light is then linearly transformed again (UTS) by the
spectral reflectance distribution of the surface (S) in the
process of being scattered to the observing receptor (R).
In order to achieve color constancy, the visual system
must arrive at a correct characterization of the invariant
spectral reflectance distribution S(\) of the external sur-
face (of the leaf) despite the contamination of the spec-
tral distribution of the proximal stimulus (UTS) by the
terrestrial filtering 7'(\) of the illumination.

Using such a linear model, Maloney and Wandell
(1986) showed how (under quite general conditions) a
visual system with a sufficient number of chromatically
distinct types of photoreceptors (such as the red-, green-,
and blue-sensitive cones in the human retina) can achieve
a disentanglement of the characteristics of the surface (S)
and the characteristics of the illumination (UT) and thus
attain color constancy. Because of the linearity of the way
in which the spectral properties of illumination and sur-
face combine is universal, this linearity should tend to be
internalized in the visual systems of organisms wherever
natural selection has favored color vision. But we are still
left with the question of what it is in the world that deter-
mines the dimensionality of color representation.

The Representation of Surface Colors Should

Have the Dimensionality of Natural Illumination
According to Maloney (1986), the number of degrees

of freedom of spectral reflectance of natural surfaces (n

in Equation 4a) falls somewhere between five and eight.

A visual system that completely recovers the chromatic
characteristics of such surfaces by means of the compu-
tation described by Maloney and Wandell (1986) would
require a number of chromatically distinct types of photo-
receptors that is one greater than this number of degrees
of freedom—that is, between six and nine. The conclusion
is clear: a visual system, like ours, that has only three
types of color receptors (the red, green, and blue cones)
and, hence, that is restricted to three dimensions of color
representation cannot fully capture the intrinsic reflectance
properties of natural surfaces.

Suppose, however, that the dimensionality of color rep-
resentation has been favored not because it captures the
full spectral reflectance properties of natural surfaces but
because it is the minimum dimensionality needed to com-
pensate for natural variations in illumination and, thus,
to achieve constancy of whatever chromatic aspects of the
surfaces are represented. Then, even though we may not
perceive everything that could be perceived about each
surface, we at least perceive each surface as the same
under all naturally occurring conditions of illumination.

Available evidence indicates that the number of degrees
of freedom of terrestrial lighting (mm in Equation 4b) is
essentially three. Principal components analyses have re-
vealed that the great variety of spectral energy distributions
of natural illumination measured for different atmospheric
conditions and times of day can be well approximated as
linear combinations of just three basis functions (see Judd,
McAdam, & Wyszecki, 1964; and other studies cited in
Maloney & Wandell, 1986, note 17). Moreover, the three
dimensions of spectral variation in natural illumination have
identifiable sources in the world (R. N. Shepard, 1992):

1. There is an overall light-versus-dark variation rang-
ing from the full and direct illumination by midday sun
and unobstructed sky to whatever portion of that same
illumination (uniformly reduced across all wavelengths)
reaches an object only by scattering from achromatic
clouds, cliffs, or moon.

2. There is a red-versus-green variation depending on the
balance between the long (red) wavelengths, which are se-
lectively passed by atmospherically suspended particles (a
particularly significant factor when the sun is close to the
horizon) or which are selectively blocked by water vapor,
and the remaining band of visible wavelengths, which
(ranging from yellows through blues) center on green.

3. There is a blue-versus-yellow variation depending
on the balance between the short (blue and violet) wave-
lengths, which are selectively scattered (e.g., to a shaded
object) by the molecules of the air itself, and the remain-
ing band of visible wavelengths of light directly from the
sun (as might reach an object through a small *‘window’’
in a leafy canopy), which (ranging from greens through
reds) center on yellow.

Possibly, then, the light-dark, red-green, and blue-
yellow opponent processes, proposed by Hering (1887/
1964) and Hurvich and Jameson (1957), on quite differ-
ent (psychophysical and, subsequently, neurophysiological)
grounds, may not have to be accepted as an arbitrary de-
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Figure 8. Illustration, for two conditions of terrestrial filtering (T1 and T;), of how the spectral composition
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sign feature of the human visual system. Such a three-
dimensional representation of color may have emerged
as an adaptation to a pervasive and enduring feature of
the world in which we have evolved. At the same time,
this feature may be the nonarbitrary source of the trans-
formation of the rectilinear continuum of physical wave-
length into Newton’s circle of hues. Very schematically,
the two colors in either the red-green pair or the blue-
yellow pair, corresponding to the two extremes of varia-
tion on an independent dimension of terrestrial filtering,
are analogous to diagonally opposite corners of a square
(see R. N. Shepard & Carroll, 1966, Figure 6, p. 575)
or diametrically opposite points on a circle (as in Fig-
ure 11 in the next section of the present article). As such,
the two opposite colors in either of these pairs must be
farther apart than the colors in any other pair, including
red and blue, which, although corresponding to points
close to the extreme ends of the physical continuum of
visible wavelengths, are perceptually represented in a way
that is more analogous to points separated by one edge
of a square or by only one quarter of a circle (R. N.
Shepard, 1992, 1993).

If the linear transformations of the illumination that oc-
cur in nature have just three degrees of freedom, then three
dimensions are required to compensate for those trans-
formations and, thus, to maintain constancy in the appar-
ent colors. Indeed, three such dimensions are needed to
maintain constancy even in just the apparent lightnesses
of surfaces, without regard to chromatic color (R. N. Shep-
ard, 1990, 1992). That is, for every terrestrially induced
linear transformation on the illumination, a compensating
(inverse) transformation must be internally performed to
achieve invariance of the final internal representation of
the colors—including even their ordering with respect to
achromatic lightness. (Even in the purely achromatic, i.e.,
gray-scale, representation of, say, a red and a blue sur-
face, the red surface would appear a lighter gray than
would the blue surface in the light of the setting sun but
the blue surface would appear lighter gray than the red
in the light scattered only from the sky—unless the input
was first analyzed into separate chromatic channels and
appropriately transformed, before being reduced to the
final gray-scale representation.)

Figure 9a indicates how one possible linear transfor-
mation (for simplicity of illustration, a two-dimensional
transformation representable by a diagonal matrix) would
affect the amounts of light of long and short wavelengths
reflected back from each of a number of colored surfaces
(indicated by the dots). These amounts might correspond
to what would be picked up by red and blue cones in the
human retina. Under a shift in natural illumination in
which, for example, clouds that are blocking light directly
from a low sun drift to block, instead, light scattered from
the sky, the light scattered back to the eye from each sur-
face (indicated by a filled circle) contains a reduced por-
tion of its original short-wavelength (blue) component and
an increased portion of its original long-wavelength (red)
component (as indicated by the arrow carrying the filled
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Figure 9. Schematic illustration of the effects of a terrestrial trans-
formation on the amounts of light of different wavelengths scattered
back to an eye: (a) for just two dimensions and a diagonal transfor-
mation, and (b) for a nondiagonal transformation in three dimen-
sions. (See text for explanation.)

circle to the position of a corresponding open circle). An
inverse linear transformation (mapping the rectangle with
dashed outline back to the square with solid outline) will
reinstate the original configuration of dots and, hence,
achieve constancy of appearance of the surface colors.
(The chromatic information about the surfaces is not in
any sense used up in correcting for the illumination. Be-
cause only a small subset of the many visible surfaces—
the individual points in Figure 9a—is sufficient for making
the correction, the correcting transformation still provides
for the representation of the colors in the whole set in the
low-dimensional representation.) The general case of a
linear transformation that is both three-dimensional and non-
diagonal is more difficult to illustrate for the whole set
of points representing individual surfaces, but a rough idea
of such a transformation may be gained from the more
schematic depiction of the more general linear transfor-
mation between a cube and a parallelepiped in Figure 9b.



The dimensionality required is the same regardless of
the particular transformation used to approximate the op-
timally color-constant transformation. This transforma-
tion could have the simplest (diagonal) form of the trans-
formation described by Land and McCann (1971). It could
have the more color-constant general linear form of the
transformation proposed by Maloney and Wandell (1986;
see also the revised approach described by Marimont &
Wandell, 1992). Or it could have some still more sophisti-
cated form that would take account of surface orientation,
shading, and shadows (see, e.g., Sinha & Adelson, 1993);
specular reflections from glossy surfaces (see, e.g., Tomi-
naga & Wandell, 1989); or even, when the geometry per-
mitted the inference that the light falling on the object was
identical to the light reaching the eye directly from the
visible source, spectral properties of the illumination itself.

Formal Characterization of the Representation
of Invariant Colors

As suggested by the preceding discussion of the spec-
tral transformations of light by atmospheric filtering and
surface reflection, and of the inverse transformations re-
quired to achieve invariance, these spectral transforma-
tions, like the rigid transformations of objects in space,
constitute a mathematical group. Krantz (1975a, 1975b)
has already presented an extensively developed group-
theoretic formulation for the appearances of colored lights.
From an evolutionary perspective, however, it was the
invariant characteristics of light-reflecting objects—not the
variable light or sources of light—that were of primary
biological significance for the survival and reproduction
of our ancestors in the pretechnological world. The linear-
ity of the transformations of filtering and reflection en-
sures that the appropriate group for representing variations
in the spectral composition of the light reaching our eyes
from surrounding surfaces is, instead of the Euclidean
group appropriate for rigid motions of objects in space,
a linear group. Of potential value, therefore, would be
the further development of such a group-theoretic formu-
lation of the representation of surface colors at a level of
detail comparable to that provided in the group-theoretic
representations of lights by Krantz (1975a, 1975b), of po-
sitions and motions by Carlton and R. N. Shepard (1990a,
1990b), of nonrigid deformations by Leyton (1992), or
of musical pitches by Balzano (1980).

The formalization of the structures underlying psycho-
logical representation at a suitably abstract level can re-
veal deep analogies between disparate domains. In the do-
main of color, just as in the domains of position, motion,
deformation, and musical pitch, transformations have an
abstract group-theoretic representation. Different domains
require different groups, such as the Euclidean group for
changes in position of an invariant shape, and the linear
group for changes in the spectral composition of light
reflected from an invariant surface. Nevertheless, they
share some fundamental properties. In the representation
of position or motion and in the representation of color
alike, the formal characterization reveals, for example,
how prevailing structural constraints yield dimensional re-
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duction of the representational space. Thus the symmetry
group S(O) of a surface of revolution, such as a cylinder
or a sphere, entails, through substitution of the appropri-
ate quotient manifold (Equation 2), a reduction from a
six-dimensional to a five- or a three-dimensional space
of distinguishable positions, respectively (Carlton & R. N.
Shepard, 1990b). Similarly, a restriction on the degrees
of freedom of terrestrial filtering permits a reduction in
the dimensionality of the representation for surface colors,
from a space of six or more dimensions needed to capture
the full reflectance characteristic of the surfaces of natural
objects, to the three-dimensional space sufficient for the
minimal invariant representation of their intrinsic colors.

Generality of the Principles of
Color Representation

Adaptation to the degrees of freedom of natural illumi-
nation does not of course ensure color constancy under
conditions departing from those that have prevailed dur-
Ing terrestrial evolution. Modern technology has produced
spectrally unnatural light sources under which human vi-
sion may not be color constant—as demonstrated in the
vision laboratory, or under mercury vapor street lamps
at night (where our companions may take on a ghastly
aspect or we may fail to recognize our own car). Nor is
an essentially three-dimensional variation of natural day-
light the only factor that can determine the dimensional-
ity of the color space for a species. For nocturnal or deep-
sea animals, the sensitivity afforded by achromatic rod
vision may outweigh the benefits of cone-based color con-
stancy. Even for many diurnal animals (including new
world monkeys and human dichromats), the gain in color
constancy attainable by the addition of a third class of
wavelength-selective cones may be only marginal. Finally,
runaway sexual selection may lead not only to the evolu-
tion of uniquely colored markings or plumage but also
to the emergence of additional classes of retinal recep-
tors and dimensions of color space tuned to the represen-
tation of such colors (R. N. Shepard, 1992.)

Still, the converging evolution of three-dimensional
color representation in diverse visually dependent animals—
evidently including most humans as well as the birds and
the bees—may not be accidental. The speculation that I
have favored is that this three dimensionality may be an
adaptation to a property that has long prevailed on our
planet. We may need three dimensions of color not be-
cause the surfaces of objects vary in just three dimensions
but because we must compensate for the three degrees
of freedom of natural lighting in order to see a given sur-
face as having the same intrinsic color regardless of that
illumination.

The reduction specifically to three dimensions of color,
though justified here in terms of the variations of natural
illumination prevailing on earth, may hold more gener-
ally. On any planet capable of supporting visually ad-
vanced forms of life, illumination is likely to originate
primarily from an essentially invariant stellar source.
Moreover, the atmospheric and surface conditions nec-
essary for such life are likely to provide only a limited
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spectral window of transmitted wavelengths of that light.
Hence, the principal variations of the light reaching sig-
nificant objects on or near the surface of such a planet
are likely to be a variation in the overall quantity of that
light and independent variations at the short-wavelength
edge and the long-wavelength edge of the spectral win-
dow. Although additional, more subtle and spectrally se-
lective variations may be to some extent present, these
three variations—in the overall level of the transmitted
light, and the extent of its reach into the short and the
long wavelengths—seem likely to predominate in plane-
tary environments generally and to exert the greatest in-
fluence through natural selection.

Whether or not my conjecture as to the nonarbitrary
source and possible generality of the tendency toward
three-dimensional color representation is ultimately sup-
ported, the universally linear way in which the spectral
composition of light is transformed by scattering and filter-
ing in the external world seems likely to have favored,
wherever color vision has evolved, the internal implemen-
tation of compensating linear transformations on the prox-
imal stimulus. Only in this way can significant external
objects under any naturally varying illumination yield a
color-constant internal representation, whatever its dimen-
sionality may be.

REPRESENTATION OF AN OBJECT’S KIND

The preceding examples concerned abilities to identify
stimuli as distal objects that—despite wide variations in
position and lighting—are nevertheless identical in intrin-
sic shape or color. My third and final example concerns
an ability that does not require spatial or color vision and,
hence, that is still more fundamental and ubiquitous. This
is the ability to recognize that even when the distal ob-
jects themselves are not identical, they may nevertheless
be objects of the same basic kind and, hence, likely to
have the same significant consequences for the perceiver.
For example, whether a newly encountered plant or ani-
mal is edible or poisonous depends on the hidden genetic
makeup of the natural kind of that object.

Under the term basic kind I mean to subsume not only
such natural kinds as animal, vegetable, and mineral spe-
cies, but also such basic-level categories (Rosch, Mervis,
Gray, Johnson, & Boyes-Braem, 1976) as knife, bowl,
or chair (for humans) or trail, burrow, or nest (for ani-
mals of some other species). Objects of the same basic
kind are thus objects that provide the same functions—or
affordances (in the sense of Gibson, 1979). A basic kind
typically includes objects that, although more or less sim-
ilar, may be readily discriminable from each other: an
apple may be red or green; a trail may be level or steep;
a chair may have a low or high back. Generalization from
one object to another is not a failure of discrimination,
therefore, but a cognitive act of deciding that two objects,
even if readily distinguishable, may be similar enough to
be of the same kind and, hence, to offer the same signifi-
cant consequence or affordance.

This simple idea yields a quantitative explanation of a
very general empirical regularity that is latent in general-
ization data of the sort that specifies, for all pairs of n
stimuli, the probability that a response learned to one of
the stimuli in the pair will be made upon presentation of
the other stimulus of that pair. The latent regularity
emerges when such data are submitted to multidimensional
scaling, a method that finds the unique mapping of ob-
jects or stimuli into a space of minimum dimensionality
such that the data have an invariant monotonic relation
to corresponding distances in that space (see Kruskal,
1964; R. N. Shepard, 1962a, 1962b, 1980). The result-
ing generalization gradients, which describe how the
probability of a response learned to one stimulus falls
off with the distance from it of each other stimulus in
the obtained spatial representation, have uniformly ap-
proximated a function of simple exponential decay form.
See Figures 10a and 10b, respectively, for generaliza-
tion gradients that I obtained in this way (R. N. Shepard,
1962b, 1965) for spectrally pure colors (hues) based on
generalization data from pigeons (Guttman & Kalish,
1956) and on a related type of similarity data from hu-
mans (Ekman, 1954). The smooth curves are simple ex-
ponential decay functions fitted to the points by adjust-
ment of a single parameter, the slope constant (which can
equivalently be regarded as a scaling factor for the dis-
tances in each spatial representation). (For a number of
gradients of generalization obtained in this way for other
visual and auditory stimuli, see R. N. Shepard, 1987b;
and for confirmation that the shape of the obtained func-
tions is determined by the data and not by the multidimen-
sional scaling method, see R. N. Shepard, 1962b, 1965.)

Figure 11 displays the points corresponding to the spec-
tral colors in the configuration (obtained from the human
data) that yielded the approximately exponential function
shown in Figure 10b. Four observations concerning this
configuration are relevant here. First, as the close fit to
the subsequently drawn circle indicates, the obtained con-
figuration of points closely approximates Newton’s color
circle—the equatorial great circle of hues schematized in
the earlier Figure 7a. Second, the implied psychophysical
mapping from the rectilinear continuum of physical wave-
lengths to the circular continuum of perceived hues emerges
as a consequence of my requirement that the law of gen-
eralization be not only invariant but monotonic—a require-
ment that was met, as can be seen in Figure 10b. (The
pigeon data on which Figure 10a was based did not span
a wide enough range of wavelengths to reveal this cir-
cularity.) Third, as I have already noted, the circularity of
perceived hues is consistent with the opponent-processes
representation of colors (Figure 7b; see R. N. Shepard,
1993; R. N. Shepard & Cooper, 1992), which I conjec-
ture to have arisen as an adaptation to the three degrees
of freedom of natural illumination. Fourth, circular com-
ponents, though historically ignored by most psychophysi-
cists, arise in many representational spaces, including, in
addition to those for color and for position and motion
(considered here, and in R. N. Shepard, 1978), the chroma
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Figure 10. Generalization gradients for spectral hues obtained by
applying muitidimensional scaling to human and animal data: (a) based
on the solution obtained by R. N. Shepard (1965) for the pigeon gen-
eralization data collected by Guttman and Kalish (1956), and (b) based
on the solution obtained by R. N. Shepard (1962) for the human sim-
ilarity data collected by Ekman (1954). The distance, D, for each point
is the Euclidean distance between the two colors in the multidimen-
sional scaling solution based on generalization data, G; and the smooth
curve in each plot is a one-parameter exponential decay function fit-
ted by R. N. Shepard (1987b). From “Toward a Universal Law of
Generalization for Psychological Science,” by R. N. Shepard, 1987,
Science, 237, p. 1318. Copyright 1987 by the American Association
for the Advancement of Science. Adapted by permission.

circle and the circle of fifths for musical pitch (Balzano,
1980; Krumhansl & Kessler, 1982; R. N. Shepard, 1964b,
1965, 1982, 1983), and the circadian, circalunar, and
circannual components of time (see, e.g., Enright, 1972;
Winfree, 1980).

Formal Characterization of Generalization
Based on Possible Kinds

I originally derived the proposed universal law of gen-
eralization for the simplest case of an individual who, in
the absence of advance knowledge about particular ob-
jects, encounters one such object and discovers it to have
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an important consequence. From such a learning event,
the individual can conclude that all objects of this kind
are consequential and that they therefore fall in some
region of representational space that overlaps the point
corresponding to the object already found to be conse-
quential. Apart from its overlap with this one point, how-
ever, this consequential region remains of unknown lo-
cation, size, and shape in representational space.

Although it is not essential to the basic theory, in the
interest of keeping the initial formulation as sharp as pos-
sible, I propose for the present to proceed on the work-
ing hypothesis that the region in representational space
corresponding to a basic kind is a connected region. Be-
tween the points corresponding to any two objects of that
kind, then, there is always a continuous path in the repre-
sentational space that falls entirely within the consequential
region for that kind. Thus, an apple could be continuously
changed into any other apple, a chair could be continu-
ously changed into any other chair, and a capital A could
be continuously changed into any other capital A in such
a way that at each step of the metamorphosis, the object
would retain its recognizability as an apple, chair, or let-
ter A, respectively.

The characterization of basic level categories in terms
of a dichotomous criterion of connectedness, rather than
in terms of some graded measure of correlation (of the
sorts proposed by Rosch et al., 1976, and others) has two
potential advantages: it can provide for the possibility of
a sharp boundary between objects that, though similar,
belong to different natural kinds (only one of which, for
example, manufactures a toxin); and it can provide for
the possibility that objects of the same kind may never-
theless differ arbitrarily widely in some of their features
(an animal can vary enormously in size, shape, or color-
ation, for example, and still be a dog). Connectedness
need not hold for nonbasic (e.g., superordinate or ad hoc)
categories. There may be no continuous series between
two such pieces of furniture as a sofa and a floor lamp
for which every object along the way is also recognizable
as a piece of furniture; and there may be no continuous
series between two letters of the alphabet such as B and
a C for which every intermediate shape is also recogniz-
able as a letter of the alphabet. Even for what I am call-
ing basic kinds, my current working assumption of con-
nectedness is only provisional.

I begin by considering an individual who has just found
a particular, newly encountered object to have a signifi-
cant consequence. This individual can only estimate the
likelihood that a second, subsequently encountered ob-
ject also has that consequence as the conditional proba-
bility that a random and (provisionally) connected region
that happens to overlap the point corresponding to the first
object also overlaps the point corresponding to the sec-
ond. The gradient of generalization then arises because
a second object that is closer to the first in the represen-
tational space is more likely to fall within such a random
region that happens to overlap the first.

To obtain an unbiased quantitative estimate of the proba-
bility that the new stimulus is consequential, the individual
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Figure 11. Multidimensional scaling configuration for Ekman’s 14 spectral colors, ob-
tained by R. N. Shepard (1962b) and corresponding to the plot shown in Figure 10b.
The circle was subsequently drawn through the points to bring out the resemblance to
Newton’s color circle. The three-digit numbers indicate the wavelengths (in nanometers)
of the corresponding stimuli. From “The Analysis of Proximities: Multidimensional Scaling
With an Unknown Distance Function. II,” by R. N. Shepard, 1962, Psychometrika, 27,
p. 236. Copyright 1962 by the Psychometric Society. Adapted by permission.

must use Bayesian inference. In effect, such an individual
integrates over all candidate regions in representational
space—with whatever prior probabilities, p(s), are as-
sociated in that individual with the different possible sizes,
s, for such regions. (In the absence of advance informa-
tion, these prior probabilities are naturally assumed to be
independent of the locations of the corresponding regions
in the representational space.) For a test stimulus cor-
responding to a position x in the representational space,
the generalization g(x) from a training stimulus (taken,
without loss of generality, to be centered at the origin of
an arbitrary coordinate system) to a new stimulus at lo-
cation x is then given by

g@) = [ p(s)m(s,x)m(s)ds, )

where m(s) denotes a (volumetric) measure of the region
of size indexed by s, and m(s,x) denotes a correspond-
ing measure of the overlap between two regions of that
size, one centered at x and one centered at the training
stimulus (i.e., at the origin).

The results of such integration turn out to depend
remarkably little on the prior probabilities assigned (R. N.

Shepard, 1987b). For any choice of the probability density
function p(s) having finite expectation, integration yields
a decreasing concave upward gradient of generalization.
For any reasonable choice, integration yields, more spe-
cifically, an approximately exponential gradient. For the
single most reasonable choice in the absence of any ad-
vance information about size—namely, the choice of the
probability density function entailed by Bayesian inference
from minimum knowledge or maximum entropy priors (see
Jaynes, 1978; Myung, in press)—integration yields exactly
an exponential decay function (R. N. Shepard, 1987b).
Specifically, the maximum entropy assumption leads to
a generalization function of the simple form

g(d) = exp(—dik), ©)

where the single parameter k depends only on the expec-
tation of p(s).

Once again, invariance emerges only when formulated
with respect to the appropriate, abstract representational
space. To refer back to the domains of position, motion,
and color, there is greater generalization between rect-
angles differing in orientation by 90° than between rect-
angles differing by somewhat less than 90°, and there is



greater generalization between surfaces reflecting the
shortest and longest visible wavelengths (violet and red)
than between either of these and a surface reflecting an
intermediate wavelength (e.g., green). Clearly, general-
ization cannot be monotonic with distance in the usual
physical space (of angle or wavelength). But generaliza-
tion can become both invariant and monotonic with dis-
tance in the psychologically appropriate representational
space, in which angles and wavelengths alike map into
closed curves (R. N. Shepard, 1962b, 1965, 1981b; R. N.
Shepard & Farrell, 1985).

Invariance in the law of generalization has thus been
obtained by separating the psychological form of general-
ization in the appropriate psychological space from the
psychophysical mapping from any specified physical pa-
rameter space to that psychological space. The psycho-
physical mapping, having been shaped by natural selec-
tion, would favor a mapping into a representational space
in which regions that correspond to basic kinds, though
differing widely in size and shape, have not, on the aver-
age over evolutionary history, been systematically elon-
gated or compressed in any particular directions or loca-
tions in the space. From what they learn about any newly
encountered object, animals with a representational space
for which biologically relevant kinds were consistently
elongated or compressed in this way would tend to general-
ize too much or too little in certain directions of that space,
in comparison with other species that had evolved an innate
representational space that was appropriately regularized
for the biologically relevant basic kinds in our world.

Ultimately, I expect the approach to generalization
based on inference from maximum entropy priors, like
the approaches I have already outlined to the representa-
tions of position, motion, shape, and color, to find a
grounding in the theory of groups. This is because en-
tropy (following Shannon, 1948), taken as a measure of
the absence of knowledge, can have a well-defined mean-
ing only in relation to a space that (as I put it above) is
properly ‘‘regularized’’ or that (in the words of Wiener,
1948) has a ‘‘fundamental equipartition.”’ To take the sim-
plest example, if we have no knowledge about the location
of a point in a one-dimensional space, we can only sup-
pose that every location on the line is equally probable.
(This is the *‘principle of indifference’’ so successfully
employed in physics by Maxwell and Boltzmann—see
Jaynes, 1978.) Accordingly, the distribution that maxi-
mizes entropy in this case is, in fact, the uniform distri-
bution. But if we were to transform this space by a non-
linear transformation (such as x* = x* or x* = logx),
what had been a uniform and maximum entropy distribu-
tion in the original space would no longer be so in the
transformed space, and vice versa. Without going further
into this deep and subtle matter here, I simply note that,
in the opinion of one of the leading proponents of the max-
imum entropy approach in physics, ‘‘This problem is not
completely solved today, although I believe we have made
a good start on it in the principle of transformation
groups’’ (Jaynes, 1978).
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'Extensions of the Generalization Theory

Determinants of the metric of representational space.
A distinction that has been found basic to the understand-
ing of similarity assessments and to discrimination and
classification performances is the now widely recognized
distinction between psychologically integral and separa-
ble relations among stimulus dimensions (see, e.g.,
Garner, 1974; Lockhead, 1966; R. N. Shepard, 1964a,
1991). This distinction has also been found to have a nat-
ural basis in the idea of consequential regions (R. N.
Shepard, 1987b, 1991; R. N. Shepard & Tenenbaum,
1991). To the extent that the extensions of such regions
along two or more dimensions have been positively corre-
lated over evolutionary history, the integration over all
possible regions, with their associated maximum-entropy
weights, yields surfaces of equal generalization that ap-
proximate ellipsoids, implying the L, norm and associated
Euclidean metric for that multidimensional representa-
tional space. To the extent that the extensions of such
regions along the different dimensions have been uncor-
related, the integration over possible regions yields sur-
faces of equal generalization that approximate cross poly-
topes (a diamond-shaped rhomb in two dimensions, a
triangular-faced octahedron in three), implying the L,
norm and associated ‘‘city-block’’ metric for that sub-
space. In both of these multidimensional cases, integration
still yields the exponential type of decay of generaliza-
tion with distance in representational space originally de-
rived for the one-dimensional case (for which the Euclid-
ean and city-block metrics are equivalent). (The most
appropriate group-theoretic representation is expected to
be different, however, for conjunctions of integral and
for conjunctions of separable dimensions.)

Generalization over discrete features. Although the
derivation of the exponential gradient of generalization
has been outlined here for the case of a continuous repre-
sentational space, the theory is not restricted to the con-
tinuous case. When the objects possess only discrete (or
even binary valued) features, the analogs of the conse-
quential regions in the continuous case become consequen-
tial subsets, and the analog of the volumetric size, m(s),
of a region becomes the (finite) number of objects in such
a subset. Nevertheless, summation (the discrete analog
of the integration used in the continuous case) still yields
an exponential type of falloff of generalization with dis-
tance, where distance is now defined in terms of the sum
of the weights of the features that differ between the two
objects or, if the features are all equal in weight, simply
in terms of the number of differing features (Russell,
1988; see also Gluck, 1991; R. N. Shepard, 1989).

Classification learning. Over a sequence of learning
trials in which different objects are found to have or not
to have a particular consequence, Bayesian revision of the
prior probabilities associated with the various candidate
regions yields a convergence to the true consequential
region (R. N. Shepard & Kannappan, 1991; R. N. Shep-
ard & Tenenbaum, 1991). Moreover, it does so in a way
that agrees with results for human categorization (e.g.,
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Nosofsky, 1987, 1992; R. N. Shepard & Chang, 1963;
R. N. Shepard, Hovland, & Jenkins, 1961): The learning
proceeds more rapidly when the consequential set of ob-
Jects forms a region in the representational space that is
connected rather than disconnected (R. N. Shepard &
Kannappan, 1991). The learning also proceeds more rap-
idly when the consequential set is compact in terms of
the Euclidean metric if the dimensions are integral, but
more rapidly when the consequential set is based on shared
features (or conjunctions of features) if the dimensions
are separable (R. N. Shepard & Tenenbaum, 1991). (For
related simulations, see Nosofsky, Gluck, Palmeri, McKin-
ley, & Glauthier, in press; Nosofsky, Kruschke, & Mc-
Kinley, 1992; and for a similar Bayesian approach in
which, however, the underlying hypotheses are taken to
be Gaussian distributions rather than the sharply bounded
regions posited here, see Anderson, 1991.)

A law of discriminative reaction time. As I noted in
the discussion of critical times in imagined and apparent
motion, natural selection has favored the ability to make
decisions not only accurately but swiftly. But, whereas
the time required to determine that two things are identi-
cal despite their apparent difference linearly increases with
their transformational separation in the space of possible
positions (as in mental rotation), the time required to de-
termine that two things are different despite their appar-
ent similarity nonlinearly decreases with their separation
in the space of possible objects. Specifically, latency of
a discriminative response, like probability of generaliza-
tion, falls off according to a decreasing, concave-upward
function of distance between stimuli in representational
space. But, whereas generalization probability, which can-
not exceed one, approximates an exponential decay func-
tion of distance, discrimination latency, which is un-
bounded, is expected (under idealized conditions) to grow
without limit as the difference between the stimuli ap-
proaches zero. In practice, such a function cannot be pre-
cisely determined for very small differences; experimental
subjects would eventually either simply make a random
guess or leave the experiment to terminate a potentially
interminable trial. Nevertheless, functions that have been
obtained do often approximate a reciprocal or hyperbolic
form (see, e.g., Curtis, Paulos, & Rule, 1973; R. N.
Shepard, 1981a, 1989; see also R. N. Shepard, Kilpat-
rick, & Cunningham, 1975). Such a form can be theoret-
ically derived within the framework of the generalization
theory. Suppose, for example, (1) that the internal rep-
resentations corresponding to candidate regions overlap-
ping either stimulus become activated, each with proba-
bility per unit time proportional to that region’s associated
prior probability of being consequential, and (2) that the
first such representation to be activated that overlaps one
but not the other of the two stimuli precipitates the dis-
criminative response. Integration over all possibilities then
yields, for the expected latency of discrimination, a re-
ciprocal type of dependence on distance in representational
space (see R. N. Shepard, 1987b).

The generality of generalization. Presumably, things
having the potential for particular, associated consequences

belong to distinct kinds (including physical elements,
chemical compounds, and biological species) and do so
not just in the human or even the terrestrial environment
but throughout the universe. If so, the exponential law
of generalization, the reciprocal law of discriminative
reaction time, and the Euclidean and city-block metrics
of representational space may have arisen not just for the
humans or animals that we have studied on earth. Such
laws and such metrics may have arisen wherever suffi-
ciently advanced forms of life may have evolved. (This
remains true even if biological species are themselves in
part the product of mind—as suggested by the genetic-
algorithm simulations of Todd & Miller, 1991.)

CONCLUSION

Perhaps psychological science need not limit itself to
the description of empirical regularities observed in the
behaviors of the particular, more or less accidental col-
lection of humans or other animals currently accessible
to our direct study. Possibly we can aspire to a science
of mind that, by virtue of the evolutionary internaliza-
tion of universal regularities in the world, partakes of
some of the mathematical elegance and generality of the-
ories of that world. The principles that have been most
deeply internalized may reflect quite abstract features of
the world, based as much (or possibly more) in geome-
try, probability, and group theory as in specific, physi-
cal facts about concrete, material objects. By focusing on
just three perceptual-cognitive examples—concerning the
representation of the colors of objects, the kinds of ob-
jects, and the positions, motions, and shapes of objects—
I have tried to indicate how psychological principles of
invariant color, optimum generalization, and simplest mo-
tion may achieve universality, invariance, and mathematical
elegance when formulated in terms of points, connected
subsets of points, and geodesic paths in the appropriate
abstract representational spaces.
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