Results at Age 8 Years of Early Intervention for Low-Birth-Weight Premature Infants

The Infant Health and Development Program

Cecelia M. McCarton, MD; Jeanne Brooks-Gunn, PhD; Ina F. Wallace, PhD; Charles R. Bauer, MD; Forrest C. Bennett, MD; Judy C. Bernbaum, MD; R. Sue Broyles, MD; Patrick H. Casey, MD; Marie C. McCormick, MD, ScD; David T. Scott, PhD; Jon Tyson, MD; James Tonascia, PhD; Curtis L. Meine, PhD, for the Infant Health and Development Program Research Group

Objective.—To reevaluate at age 8 years children who had participated during the first 3 years of life in a randomized clinical trial of special services for low-birth-weight (LBW) premature infants.

Design.—Follow-up of a randomized controlled trial of premature infants (≥37 weeks' gestation), stratified by 2 LBW groups (lighter [≤2000 g] and heavier [2001-2500 g]) and divided into intervention (n = 377) and follow-up only (n = 608) groups.

Setting.—Eight sites serving diverse populations.

Participants.—At age 8 years, 874 children were assessed: 336 in the intervention group and 538 in the follow-up only group.

Intervention.—The 3-year intervention consisted of home visits (birth to 3 years), child development center services (ages 3 to 7 years), and parent group meetings (ages 1 to 3 years).

Primary Outcome Measures.—Cognitive functioning (Weschler Intelligence Scale for Children-III; Peabody Picture Vocabulary Test-Revised); academic achievement (Woodcock-Johnson Tests of Achievement-Revised); and parental reports of school performance, behavior (Child Behavior Checklist), and health (Child General Health Survey).

Results.—At age 8 years, in the entire cohort and in the lighter LBW stratum, the intervention and follow-up only groups were similar on all primary outcome measures. Differences favoring the intervention group were found within the heavier LBW group: full-scale IQ score (4.4 points higher, P = .007), verbal IQ score (4.0 points higher, P = .01), performance IQ score (3.9 points higher, P = .02), mathematics achievement score (4.8 points higher, P = .04), and receptive vocabulary score (6.7 points higher, P = .001). On a physical functioning subscale, the whole intervention group received less favorable ratings, while the lighter LBW intervention group had lower maternal ratings assessing social limitations caused by behavior.

Conclusion.—Although at age 8 years there were modest intervention-related differences in the cognitive and academic skills of heavier LBW premature children, attenuation of the large favorable effects seen at 3 years was observed in both the heavier and lighter LBW groups. This indicates a need to develop additional intervention strategies for LBW premature children that can provide sustained benefits.

ON GLOBAL MEASURES of intelligence and other neurodevelopmental assessments, low-birth-weight (LBW) premature children perform more poorly than normal-birth-weight children. In addition, by school age, LBW children are at increased risk of learning disabilities, academic difficulties, and behavior problems, even in the absence of global intellectual deficits. Few research efforts have been devoted to determining whether early intervention could attenuate the long-term problems seen in LBW preterm infants. The Infant Health and Development Program (IHDP) was designed as a multistage randomized clinical trial evaluating in the first 3 years of life the efficacy of center-based educational intervention, home-based family support services, and pediatric follow-up in reducing cognitive, behavioral, and health problems among LBW premature infants. The cognitive and behavioral outcomes of the IHDP trial at ages 3 and 5 years have been reported, as have the health outcomes at age 3 years. At 3 years, the children in the intervention group had significantly higher intelligence test scores and receptive vocabulary test scores and lower scores on a parental measure of reported behavior problems than the children in the follow-up only group. The rate of maternally reported health conditions over the first 3 years was greater for the children in the intervention group (difference of 0.27), although they were not hospitalized to a greater extent than the children in the follow-up only group. The advantages at age 3 years conferred by the intervention were more pronounced in the heavier LBW stratum (2001-2500 g) than in the lighter LBW stratum (≤2000 g) in terms of IQ score (14 vs 7 points), receptive vocabulary score (9 vs 5 points), and behavior problem score (7 vs 2 points).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
reduced risk of health problems was greater in the lighter LBW intervention group than in the lighter LBW follow-up only group (difference of 0.30); no differences in the rate of maternally reported health problems between the intervention and follow-up only groups were found in the heavier LBW stratum.

At age 3 years, 2 years after the intervention ended, we saw an attenuation of IQ effects. Specifically, there were no significant overall differences in IQ score, receptive vocabulary, reported behavior problems, or health measures between the intervention and follow-up only children. However, within the heavier LBW stratum, the intervention group had higher full-scale IQ scores (4 points) and verbal IQ scores (4 points) as well as higher receptive vocabulary scores (6 points) than the follow-up only group.

The present report extends the follow-up to age 8 years. Age 8 years was chosen because it is one age at which increased academic demands may be placed on a child. As such, it is a common time for grade failure and academic problems to emerge. Our hypotheses were that enhancements of global measures of cognitive function, such as IQ score, that were found at 3 years would be attenuated by age 8 years, but that significant differences favoring the intervention group would be seen in school performance measures of reading and mathematics achievement and in reduced rates of grade failure.

METHODS

Detailed information on the selection of participants, study design, and components of the intervention program has been published previously and will be summarized here briefly. Infants were eligible for the study if they had a birth weight of 2500 g or less, had a gestational age of 37 weeks or less, resided in the catchment area, and did not have a severe medical illness or neurological impairment. Patients were enrolled from October 1984 through August 1985. A total of 985 infants constituted the primary analysis group for the trial. These infants were randomly assigned to the intervention group (n=477) or the follow-up only group (n=508) using a design with 2 birth-weight strata: lighter LBW (<2000 g [n=623]) and heavier LBW (2001-2500 g [n=362]). Although the baseline characteristics of the study sample varied greatly across the 8 sites, the randomization procedure resulted in comparable intervention and follow-up only groups at study entry.

Infants in both the intervention and follow-up only groups received the same periodic (through age 8 years) medical, developmental, and social assessments, with referrals made for other services as needed. The early-intervention program began at discharge from the neonatal nursery and continued until October 1988—until each child was at least 36 months of age, corrected for prematurity. The intervention had 3 components: home visits through age 3 years, attendance at specially designed child development centers beginning at age 1 year through age 3 years, and a series of parent group meetings every other month during the second and third years. Home visits were designed to occur weekly in the first year and bimonthly in the second and third years. Over the 3 years an average of 66.7 home visits were made. Attendance at the child development centers was to be for full days 50 weeks per year. The children attended the centers an average of 267 days per year (over both years). Parent group meetings were to be held 4 times per year; on average (over 2 years), there were 3.7 parent group meetings per year.

After the intervention ended at age 3 years, the sites attempted to find appropriate community education programs for children in both groups. Resources available at each site differed greatly; however, within the sites there were no intervention differences between the intervention and follow-up only groups in maternal reports of enrollment in education programs at age 4 years.

Of the original 985 infants in the primary analysis group, 874 (89%) were evaluated at age 8 years for a comprehensive assessment of cognitive functioning, academic achievement, behavior, and health. Individual sites differed in the percentage of children they were able to evaluate, ranging from 84% to 97%. The percentages of children within the intervention and follow-up only groups were similar, both overall and within the sites. The mean age of assessment was 8.1 years (range, 7.9-8.9 years).

The cognitive, academic achievement, and behavior evaluations at age 8 years were performed by centrally trained assessors who were masked as to the child's treatment group and history. Health status was assessed by clinic staff who had access to the child's treatment group assignment and history. As with the other evaluations, the assessment at age 8 years was to be conducted at the enrolling IHDP site. Whenever possible, children who had moved away from their enrolling site were assessed at alternative locations, either at a nearby IHDP site or in their own community, by a masked assessor who was sent to evaluate them. Of the 874 children who participated in the masked portion of the assessment, all but 50 (7%) were seen at an IHDP site.

Primary outcome measures were in the domains of cognitive skills, school performance, behavior, and health status. Several measures were administered in each domain. The complete battery is listed in Table 1, but only the primary measures indicated in Table 1 are reported here. The battery of tests given to the child is listed in the order of administration. The battery generally took no more than 3 hours to complete.

Differences between the intervention and follow-up only groups with respect to each baseline characteristic were assessed using t statistics for continuous measures and χ² statistics for categorical measures. Separate multiple linear regression models were developed for each outcome measure within each of the 2 birth-weight strata. The same set of 8 explanatory variables measured at enrollment was used in each model: intervention treatment group assignment (intervention vs follow-up only), site (8 categories), birth weight (grams), sex (male vs female), Neonatal Health Index (calculated based on length of stay in the neonatal nursery, adjusted for birth weight, and standardized to a mean of 100, with higher scores indicating better health), maternal education (did not complete high school, completed high school, postsecondary schooling), maternal age (years), and maternal ethnicity (African American, Hispanic, and white/other). Population marginal mean values and differences (intervention vs follow-up only) for each outcome measure were computed from the regression models to determine if the intervention group controlled for potentially confounding effects of 1 or more of the 7 other baseline explanatory variables. The population marginal means estimate the expected outcome measure in either the intervention or follow-up only group with the 7 other explanatory variables equated to their average values within a particular birth-weight stratum. Nominal P values derived from the regression models were used for primary outcome comparisons; no adjustments were made for multiple comparisons or multiple outcomes.

RESULTS

Table 2 compares the intervention and follow-up only groups at age 8 years for baseline data obtained at enrollment. The baseline characteristics of the intervention and follow-up only groups were comparable. Although within each site the baseline characteristics were comparable.
ever, the heavier LBW intervention group displayed significantly higher scores than the heavier follow-up only group on the Weschler Intelligence Scale for Children—III verbal IQ, performance IQ, and full-scale IQ tests. The heavier LBW intervention group also had significantly higher scores on the Peabody Picture Vocabulary Test—Revised. No differences were found between the lighter LBW intervention and follow-up only groups.

We also examined whether there were sustained effects on IQ scores of the intervention as a function of the mother's level of education. In the entire group as well as in the 2 LBW strata, there were significant IQ differences between the children as a function of the mother's level of education. Children of mothers with post–high school education had higher IQ scores than children of mothers who had completed high school, while children of mothers with less than 12 years of education had the lowest IQ scores. The differences between the intervention and follow-up only groups, however, were consistent across the 3 maternal education groups. Within the heavier LBW stratum, there was a 4-point difference between the intervention and follow-up only groups for each of the maternal education subgroups—same intervention-related difference as within the entire heavier LBW stratum. However, there were no IQ differences between the intervention and follow-up only groups for any maternal education subgroup in the group as a whole or in the lighter LBW stratum.

School Performance Outcomes

Although there were no overall differences between the intervention and follow-up only groups on either composite of the Woodcock-Johnson Tests of Achievement—Revised (Table 4), the heavier LBW intervention group had significantly higher Woodcock-Johnson broad mathematics scores than the heavier LBW follow-up only group. No intervention differences were found in either the reading or mathematics scores within the lighter LBW stratum.

Parents were asked whether children had repeated a grade or were classified as needing special education. Results indicate that the percentages of grade repetition and of children classified for special education were similar in the overall intervention and follow-up only groups and within the 2 birth-weight strata.

Behavior Outcomes

Results for the primary behavior measure are shown in Table 5. When rated

Cognitive Outcomes

Overall, we found no statistical differences between the intervention and follow-up only groups (Table 3). How-

for the intervention and follow-up only groups, there were differences between the sites, particularly on demographic characteristics, such as level of maternal education and ethnicity.
by parents on the Child Behavior Checklist, the intervention group had scores equivalent to those of the follow-up only group, and the 2 birth-weight groups were also comparable. Moreover, the percentage of children with high scores indicative of serious behavior problems was similar in the intervention and follow-up only groups and within the 2 birth-weight strata, with between 8% and 12% rated as above the cutpoint.

Health Outcomes

Responses to questions regarding illnesses and hospitalizations revealed that overall the groups had similar numbers of hospitalizations, surgical procedures, and school absences. As seen in Table 5, the intervention and follow-up only groups received similar ratings on most scale's of the Child General Health Survey. However, in the sample as a whole, the intervention group received lower ratings on the Physical Functioning Scale, indicating that these children were perceived as being more limited than those in the follow-up only group in the performance of physical activities, such as playing sports, walking up stairs, bending, lifting, or car- ing for themselves. While the heavier LBW intervention group was not distinguished from the heavier LBW follow-up only group on any measure of health, the lighter LBW intervention group received lower ratings than the lighter LBW follow-up only group on the scale assessing role/social limitations due to behavior. This indicates that their parents found them, because of behavior problems, to be more limited in the kind, amount, and degree of schoolwork and/or social activities they could perform.

COMMENT

The present report details the long-term follow-up of a multisite randomized clinical trial of early intervention from birth to 3 years of age for LBW children. While the intervention improved cognitive test scores and reduced behavior problems at age 8 years, 5 years after the intervention ended, at age 8 years, overall IQ scores, cognitive skills, school achievement, behavior, and health indices were similar in the 2 groups of children. Both the intervention and follow-up only groups had IQ and vocabulary scores substantially below expectations based on standardized norms. Moreover, there was no reduction in grade repetition or use of special educational services. On the other hand, there were statistically significant, albeit clinically modest, differences between the heavier LBW intervention and follow-up only groups on several measures of cognition and school achievement. As at age 5 years, there were no differences found on any
Table 5.—Behavior and Health Measures at Age 8 Years for Children in the Infant Health and Development Program

<table>
<thead>
<tr>
<th>Intervention Group</th>
<th>Follow-up Group</th>
<th>Difference, Intervention vs Follow-up Only</th>
<th>Mean Score</th>
<th>P</th>
<th>Difference, Intervention vs Follow-up Only</th>
<th>Mean Score</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birth Weight, g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of maternal responses</td>
<td>334</td>
<td>536</td>
<td>216</td>
<td>342</td>
<td>118</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>Mean score</td>
<td>32.1</td>
<td>31.9</td>
<td>0.2</td>
<td>87</td>
<td>33.0</td>
<td>31.9</td>
<td>1.1</td>
</tr>
<tr>
<td>% above cutoff†</td>
<td>11.1</td>
<td>9.5</td>
<td>.45</td>
<td>12.0</td>
<td>11.1</td>
<td>.74</td>
<td>9.3</td>
</tr>
</tbody>
</table>

Child General Health Survey

<table>
<thead>
<tr>
<th>Intervention Group</th>
<th>Follow-up Group</th>
<th>Difference, Intervention vs Follow-up Only</th>
<th>Mean Score</th>
<th>P</th>
<th>Difference, Intervention vs Follow-up Only</th>
<th>Mean Score</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Functioning Scale</td>
<td>95.7</td>
<td>97.5</td>
<td>-1.8</td>
<td>.03</td>
<td>94.6</td>
<td>96.8</td>
<td>-.22</td>
</tr>
<tr>
<td>Role/Social Limitations Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Due to behavior</td>
<td>86.2</td>
<td>88.6</td>
<td>-2.4</td>
<td>14</td>
<td>84.4</td>
<td>89.0</td>
<td>-.47</td>
</tr>
<tr>
<td>Due to emotional problems</td>
<td>92.8</td>
<td>93.5</td>
<td>-0.6</td>
<td>.62</td>
<td>92.5</td>
<td>94.1</td>
<td>-.16</td>
</tr>
<tr>
<td>Due to physical health</td>
<td>93.7</td>
<td>95.6</td>
<td>-1.9</td>
<td>.09</td>
<td>93.1</td>
<td>95.2</td>
<td>-.21</td>
</tr>
<tr>
<td>Behavior Problems Scale</td>
<td>74.0</td>
<td>73.9</td>
<td>0.1</td>
<td>.90</td>
<td>73.3</td>
<td>74.4</td>
<td>-.11</td>
</tr>
<tr>
<td>Mental Health Scale</td>
<td>79.9</td>
<td>79.8</td>
<td>0.1</td>
<td>.87</td>
<td>79.6</td>
<td>79.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Bodily Pain Scale</td>
<td>88.1</td>
<td>86.5</td>
<td>-.4</td>
<td>.75</td>
<td>88.5</td>
<td>88.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Self-esteem Scale</td>
<td>85.7</td>
<td>85.7</td>
<td>0.1</td>
<td>.95</td>
<td>85.5</td>
<td>86.0</td>
<td>-.05</td>
</tr>
<tr>
<td>General Health Perceptions</td>
<td>77.7</td>
<td>77.0</td>
<td>0.7</td>
<td>.50</td>
<td>76.4</td>
<td>76.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*All scores are means. Population marginal means and differences were derived from multiple linear regression models that adjusted for sex, age, maternal education, and birthweight.[24] The cutoffs for the total score were 54 or greater for girls and 51 or greater for boys.

Cognitive Outcomes

The success of the intervention for the heavier LBW children can be gauged by their higher test scores in several cognitive skill areas (ie, intelligence, mathematics, and receptive vocabulary) as well as on some measures of reported secondary outcomes (ie, nonverbal reasoning and aspects of organizing the reproduction of a complex, visually presented design). These findings indicate that the intervention had modest success across a range of intellectual functions for this subgroup of infants.

The observed mean difference in full-scale, verbal, and performance IQ scores of 4 points favoring the heavier LBW intervention group is consistent with findings from the Abecedarian project, a 5-year preschool educational intervention for normal-weight socially disadvantaged children that was the basis of the IHDP educational intervention component. At age 8 years, a difference of 2.5 points was found for the Abecedarian intervention group.[28] In addition, the mean difference in mathematics test scores of 5 points is similar to the 9-point difference found in the Abecedarian project. This similarity in intervention effects is notable given that the IHDP target population consisted of infants at biological risk and that the intervention stopped at age 3 years.

In contrast to expectations, no differences in cognitive or behavior measures were detected at 5 years[29] or 8 years of age in the lighter LBW stratum. An intervention lasting only through age 3 years may have been insufficient to sustain long-term effects because the biomedical problems were greater in this group of children. In both the intervention and follow-up only groups, the lighter LBW children had higher rates of neurological abnormalities than the heavier LBW children[30] and had lower IQ, receptive vocabulary, reading, and mathematics scores.

Based on the results at 3 years of age, we expected greater effects for children of less economically advantaged backgrounds. Using maternal education as a proxy, we found that there was no special benefit for more socioeconomically vulnerable children at age 8 years. However, it should be noted that in the earlier study maternal education was dichotomized, while in the current study it was trichotomized.

School Performance Outcomes

Although it was hypothesized that the effects of early intervention would be most evident in the prevention of school failure, no differences were found in the percentage of children who repeated a grade or who were placed in special education. The grade retention rates of 14% and 15% in the intervention and follow-up only groups, respectively, were about the same as the rates (16% after 8 years of school) found in the Abecedarian project.[28] The kindergarten and first-grade retention rates for LBW children (12.3%) reported in a large epidemiologic study[31] are comparable to those found in the present study but were lower (7.6%) for the overall distribution of children. However, the rates in the present study are lower than that reported for 1 large LBW sample, in which 24% of LBW children who were 9 years old had repeated a grade.[32] The lower rates of grade retention in the present sample of LBW children may reflect differences in school districts' criteria for grade re-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
tention and/or policy changes limiting the number of children held back. It may also be that differences in grade repetition may not emerge until the children are somewhat older, when demands for academic performance are even greater, such as during the later years of elementary school. Support for this hypothesis is garnered from the follow-up of children in the Perry Preschool Program, which was a randomized controlled intervention program during the 1960s of half-day preschool and weekly home visits for 3- and 4-year-olds from socioeconomically disadvantaged backgrounds. Data from the follow-up indicated that differences in grades of retention and special education placement were not detected between the intervention and control groups until the children had completed third grade.

Behavioral Outcomes

No intervention differences in parental ratings of behavior were found at age 8 years either in the group as a whole or within either birth-weight stratum. The attenuation of differences in this domain is consistent with the findings entering kindergarten, but the percentage of children with high scores in the heavier (7%) and lighter (12%) LBW strata is greater than the 2% expected based on the standardization sample of the Child Behavior Checklist. A higher-than-average rate of behavioral difficulties is consistent with the findings from other follow-up studies of LBW premature children.^

Health Outcomes

No differences in any measure of illness or hospitalization were found at age 8 years. These results parallel the findings at age 5 years and indicate that the modest elevation in minor illnesses found in the intervention group at age 3 years was limited to the first year in which children were in congruence child care. However, a few differences were found in the Child General Health Survey, which measures children's health-related quality of life. In the group as a whole, the intervention group received lower rankings than the follow-up only group on a measure of physical limitations in behavior. Although no intervention differences in health behaviors were found in the heavier LBW stratum, within the lighter LBW stratum the intervention group received lower ratings than the follow-up only group on the scale assessing role/social limitations due to behavior. The reasons for the few intervention-related differences in health behaviors remain speculative. One possible explanation is that a great deal of training and observation was done with the mothers in the intervention group, making these mothers more accurate observers and reporters of their children's health-related behaviors.

Conclusions

After an 8-year study of this nature, one must ask what has been learned. In particular, what does the average difference of 4 IQ points in the heavier LBW children mean? Individually, 4 IQ points would not produce a functionally detectable difference between a child in the intervention group and one in the follow-up only group. However, on a group basis, a 4-point IQ difference between the intervention and follow-up only children might reduce the percentage of children classified as intellectually deficient and of borderline intelligence. For instance, approximately 11% of children in the heavier LBW follow-up only group had IQ scores in the borderline range (ie, 70-80). If these children had received the intervention and had gained the same 4-point increase in their IQ score, only 8% of them would have scored between 70 and 80, a percentage close to that expected in the population at large (7% of 8-year-olds).

At the same time, it is reasonable to question the economic price involved in sustaining a 4-point IQ difference. Unfortunately, no true cost-benefit test is possible. A major limitation of the IHDP is that there were no prospectively obtained cost data for implementing the program across 8 sites, although program expenses were assessed at the Miami site. The cost of delivering the 3 programmatic components was estimated at $514.46 per year per child. The investigators suggested that this high cost could have been reduced to $880 per year per child if the centers were located in the community rather than at a central location, cutting down transportation costs, and if the teacher-child ratio at the child care center was increased from 2:5 to 2:8.

These costs would be offset if grade retention was decreased and the need for special education was reduced. Although we did not detect such differences, it may have been too soon to accurately assess school failure. The majority of children were in first and second grades. The results of the Perry Preschool Program’s suggest that eventually more children may be retained or placed in special classes. Only future evaluations of the IHDP cohort will be able to assess whether economic benefits will justify the large costs per child.

These results have several implications for future early-intervention program initiatives. First, our findings suggest that programmatic efforts need to distinguish between heavier and lighter LBW infants. The program did help children with birth weights of 2000 g or less at age 3 years, but, clearly, the effects were smaller and not sustained. The lighter LBW group may contain a higher proportion of neurologically impaired children who could not benefit from the intervention. Second, assessments need to be refined enough to detect qualitative differences between heavier and lighter LBW infants. For example, maternal reports of attention deficit or distractibility may reflect environmental conditions for the heavier LBW child but may be related to neurological impairment in the lighter LBW child. The heavier LBW child may respond to changes in environment that the mother can control, but the lighter LBW child may need more structured and professionally designed situations. Third, the lack of sustained effect may reflect the need for different or continued support of lighter LBW children. It is the task of future research to characterize the populations needing ongoing support; to explore the type, intensity, and duration of interventions needed to produce sustained effects; and to develop policies to implement such interventions. Finally, the corresponding low mean IQ scores and high rates of school failure of LBW children underscore the importance of public health efforts to reduce premature births.

This study was supported by grant 5R01-HD27344 from the National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md; and by grants from the Maternal and Child Health Bureau (Title V, Social Security Act), Washington, DC; the Department of Health and Human Services, Washington, DC; and the Robert Wood Johnson Foundation, Princeton, NJ.

References

7. McCormick MC, Brooks-Gunn J, Workman-Daniels K, Turner J, Peckham GJ. The health and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46. Landgraf JM, Ware JE Jr, Schor D, Davies AR, R-Roh K. Comparisons of health status questions in children with medical conditions: preliminary psychometric and clinical results for the Children's Health and Quality of Life Project. Presented at the 10th annual meeting of the Association for Health Services Research; June 1995; Washington, D.C.