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Abstract

The study of development is, in and of itself, the study of change over time, but emotions, particularly emotional reactivity and
emotional regulation, also unfold over time, albeit over briefer time-scales. Adolescence is a period of development characterized
by marked changes in emotional processes and rewiring of the underlying neural circuitry, making this time of life formative. Yet
this period is also a time of increased risk for anxiety and mood disorders. Changes in the temporal dynamics of emotional
processes (e.g. magnitude, time-to-peak and duration) occur during this developmental period and have been associated with
risk for mood and anxiety disorders. In this article, we describe how the temporal dynamics of emotions change during
adolescence and how they may increase risk for these psychopathologies. We highlight studies that illustrate how formalizing
temporal neurodynamics of emotion may enhance links among levels of analyses from neurobiological to real-world, moment-
to-moment experiences.

Research highlights

• Adolescence is a period of dynamic changes in
emotional reactivity and regulation.

• The varying time-scales of these emotional processes
map onto changes in cortical-subcortical circuitries.

• Formalizing the temporal dynamics of emotional
processes may enhance links among levels of analysis,
connecting neural circuits to behavior and real-word
assessment of emotion.

Introduction

The emotional lives of adolescents can be erratic and
unpredictable. Some teens show outwardly labile emo-
tions, swinging from one mood to another in a matter of
seconds or minutes. Others experience long bouts of
sulking, ruminating or savoring over negative or positive
thoughts for days and some retreat inwardly, inhibiting
outward expressions of emotions over time despite
strong internal feelings. The dynamic changes of these
emotions in adolescents over time, whether expressed
outwardly or not, vary by individual. We highlight

studies that illustrate how temporal dynamics of emo-
tional processes may inform our understanding of
typical and atypical emotional processes. We focus on
the period of adolescence – the developmental period
when mood and anxiety disorders that involve maladap-
tive emotional processes peak in their prevalence (Casey,
Oliveri & Insel, 2014).

Intense and frequent emotions are common during the
early adolescent years (Larson, Moneta, Richards &
Wilson, 2002; Steinberg, 2005). Learning to regulate
these emotions without the buffer of the parent is
thought to be a key milestone of this period as the
adolescent prepares for adulthood (Casey, 2015). Emo-
tion regulation refers to the capacity to redirect attention
toward or away from emotional cues (Monk, 2008) or to
reappraise emotional information and feelings (Silvers,
McRae, Gabrieli, Gross, Remy et al., 2012). It has been
described as a goal-orientated process (Frijda, 1988;
Izard, 2009) requiring cognitive resources to be effective
(Sheppes & Gross, 2011). An important feature of
emotion regulation is that emotions are not fixed but
rather unfold over time (Davidson, 1998; Solomon &
Corbit, 1974). As Thompson (1994) notes, ‘emotion
regulation consists of the extrinsic and intrinsic processes
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responsible for monitoring, evaluating, and modifying
emotional reactions, especially their intensive and tem-
poral features, to accomplish one’s goals’ (Thompson,
1994, pp. 27–28, emphasis added). Understanding the
temporal dynamics of emotional processes may inform
the cognitive capacity required to regulate an emotional
episode (Schmeichel, 2007) and why one person is able to
flexibly and adaptively regulate emotion while another
cannot (Waugh, Shing & Avery, 2015).
In daily life, emotional regulation occurs in anticipa-

tion of emotional episodes as much as in response to
them (i.e. anticipatory vs. reactive emotional regulation),
as individuals sometimes ready themselves for expected
affective events (Gross, 2011). Prolonged experience of
an emotion is referred to as a mood state (Russell, 2003)
and can become pathological depending on its duration
and frequency (American Psychiatric Association, 2013).
In this paper we describe how changes in basic temporal
dynamics of emotions and their neural substrates during
adolescence may give rise to pathological emotions.

Defining temporal neurodynamics of emotion

The neurodynamics of emotions unfold over seconds to
hours. In their simplest form, emotions can be reduced to
temporal parameters of the magnitude, rise-time, dura-
tion and habituation across repeated episodes (Davidson,
1998). Reducing the complex constructs of emotion into
these simpler parameters affords mapping of core
processes to their underlying neural substrates (Thomp-
son, 1994). This approach builds on the framework of
cognitive neuroscience (Gazzaniga, 2004). For example,
the cognitive neuroscience of memory has been often
divided into temporal parameters, separately examining
the encoding, maintenance and retrieval of specific
memories (Schneider & Pressley, 2013). This type of
approach has demonstrated that the magnitude of
prefrontal cortical activity during encoding predicts the
later recall of information (Kirchhoff, Wagner, Maril &
Stern, 2000; Wagner, Schacter, Rotte, Koutstaal, Maril
et al., 1998), and that sustained dorsolateral prefrontal
activity during delay periods predicts working memory
performance (Braver, Cohen, Nystrom, Jonides, Smith
et al., 1997; Cohen, Perlstein, Braver, Nystrom, Noll
et al., 1997). Similarly, sustained experiences of emotion
in the absence of an emotional stimulus engages
sustained medial prefrontal cortex in adults (Waugh,
Lemus & Gotlib, 2014). Advances in assessing affective
neurodynamics are being facilitated by recent develop-
ments in statistical and methodological approaches to
neuroimaging (e.g. Lindquist, Meng Loh, Atlas &
Wager, 2009).

The human capacity to modulate emotions relies upon
neural circuits that amplify and attenuate affective states.
Frontolimbic circuitry implicated in emotion involves
detection, processing and suppression of both positive
and negative information. Traditionally, detection and
processing of emotional information has been assigned
to specific regions of the brain by valence, with the
ventral striatum and amygdala being assigned to reward
and threat detection, respectively. Yet converging animal
(Paton, Belova, Morrison & Salzman, 2006), human
imaging (Delgado, Nystrom, Fissell, Noll & Fiez, 2000;
Levita, Hare, Voss, Glover, Ballon et al., 2009), and
computational (Li, Schiller, Schoenbaum, Phelps & Daw,
2011) evidence suggests that these regions may not be
valence specific, but rather specific to learning adaptive
responses to positive and negative events. Regions of the
prefrontal cortex (PFC) are thought to play a central role
in regulating and suppression of emotional responses to
these events (Ochsner & Gross, 2005; Ochsner, Silvers &
Buhle, 2012).
Evidence from event related potential (ERP) compo-

nents have indicated the rapid time-to-peak for the
processing of emotion by revealing that there are early
ERP components (~115 ms) signaling when emotional
information is detected (Meeren, van Heijnsbergen &
Gelder, 2005). Part of this rapid ERP component in
response to emotional information is likely to resolve
ambiguity (i.e. the valence of the stimulus; Olofsson,
Nordin, Sequeira & Polich, 2008). Affective cues rapidly
engage subcortical circuits including the amygdala and
ventral striatum in which appraisal of the stimulus and
coordinating adaptive behavioral output is paramount
(Davis & Whalen, 2001; Haber & Knutson, 2010; Phelps
& LeDoux, 2005).
Characterization of changes in the magnitude and

habituation of neural responses over time using func-
tional magnetic resonance imaging (fMRI) has begun to
contribute to our understanding of emotional reactivity
and regulation. For example, using positive and negative
cues, Levita (Levita et al., 2009) found activity in both
the ventral striatum and amygdala to cues of both
valences. However, habituation to these cues, specifically
to negative ones, was associated with symptoms of
anxiety, not mean magnitude or time-to-peak. Time-to-
peak in activity differed between these subcortical
regions with activity in the ventral striatum peaking
later than in the amygdala. This pattern is consistent
with animal work confirming an unidirectional projec-
tion from the basolateral nucleus of the amygdala to the
ventral striatum (Haber & Knutson, 2010) that has been
associated with approach-related behavior irrespective of
the valence of a cue (Stuber, Sparta, Stamatakis, van
Leeuwen, Hardjoprajitno et al., 2011), while projections
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from the basolateral nucleus to the central nucleus of the
amygdala have been associated with withdrawal or
freezing behavior (Davis & Whalen, 2001; LeDoux,
2000; Nieh, Kim, Namburi & Tye, 2013).

The behavioral response of approaching or with-
drawing from positive and negative stimuli is thought
to play a significant role in the development of
adaptive and maladaptive emotional behavior (Casey,
2015). Specifically, adolescence has been linked to a
time of reactivity and approach to emotional triggers,
regardless of valence (Dreyfuss, Caudle, Drysdale,
Johnston, Cohen et al., 2014; Somerville, Hare &
Casey, 2011), especially in males (Grose-Fifer, Rodri-
gues, Hoover & Zottoli, 2013). In contrast, habituation
of this response to negative cues with repeated presen-
tations has been associated with anxiety in adolescents
who show less habituation of amygdala activity (Hare,
Tottenham, Galvan, Voss, Glover et al., 2008). Thus,
examining the temporal neurodynamics of emotion
provides insights for understanding the emergence of
typical as well as pathological emotional processes
during adolescence.

Development of temporal neurodynamics of
emotion

The unfolding of emotions in response to stimuli –
positive or negative, brief or prolonged – is embedded
within lengthier developmental dynamics. Developmen-
tal changes across time frames of weeks, months and

years are supported by neural and psychological pro-
cesses that unfold over briefer time-scales of milliseconds
to minutes. Figure 1 illustrates how distinct emotional
neurodynamics may emerge during adolescence. Early in
adolescence, subcortical circuitry may dominate emo-
tional responses, as evidenced by heightened magnitude
of subcortical regions in response to emotional cues.
These subcortical dynamics are more resistant to regu-
lation as they are associated with cortical afferents of
briefer duration earlier in development (McRae, Gross,
Weber, Robertson, Sokol-Hessner et al., 2012; Silvers,
Shu, Hubbard, Weber & Ochsner, 2015). As individuals
enter early adulthood, the subcortical dynamics of early
adolescence are modulated by emerging and more
persistent cortical regulatory engagement (Casey, 2015;
Ernst & Fudge, 2009). These more persistent cortical
afferents are thought to facilitate improved emotional
and behavioral regulation characteristic of adulthood.

The majority of functional imaging studies on the
neural dynamics of emotion during adolescence have
focused on the magnitude of responses to relatively brief
emotional stimuli and tracked the neural habituation of
this response over repeated presentations. Early work
focused largely on negative affect. For example, Baird
et al. (Baird, Gruber, Fein, Maas, Steingard et al., 1999)
showed activity in the amygdala to repeated passive
presentation of fearful faces in adolescents. Later studies
showed heightened amygdala responses to these cues of
potential threat during adolescence relative to adults
(Guyer, Monk, McClure-Tone, Nelson, Roberson-Nay
et al., 2008; Hare et al., 2008; Monk, McClure, Nelson,

Figure 1 A model of adolescent development of emotional temporal neurodynamics. At the circuit level, maturation of cortico-
subcortical circuitry from adolescence to adulthood involves increased prefrontal input to subcortical circuitry. At the neural level,
developmental changes in frontoamygdala connectivity are proposed to lead to more effective regulation of subcortical limbic
regions via more sustained PFC engagement. At the psychological level, rapid fluctuation in emotions and moods during
adolescence is attributed to less capacity to regulate heightened emotional reactivity.
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Zarahn, Bilder et al., 2003). Across development, ado-
lescents have exhibited a general pattern of heightened
amygdala activity and slower behavioral responses to
fearful faces as compared to children and adults (Hare
et al., 2008). This finding is consistent with studies of
emotional reappraisal, suggesting increasing emotion
regulation capacity from adolescence to adulthood
(McRae et al., 2012; Silvers et al., 2015).
Examining the temporal dynamics of these responses

over time (e.g. habituation of the amygdala response with
repeated presentations of potential threat or extinction of
a fear memory) implicates the ventromedial prefrontal
cortex (vmPFC) as a key regulator of sustained amygdala
activation (Phelps, Delgado, Nearing & LeDoux, 2004).
Decreased activity in the amygdala with repeated presen-
tation of empty threat has been associated with greater
negative coupling within fronto-amygdala circuitry such
that individuals with greater habituation of amygdala
activity showmore negative coupling between the vmPFC
and the amygdala (Hare et al., 2008). Tract tracing studies
in rodents suggest that this inverse association between
vmPFC and the amygdala represents greater suppression
of amygdala activity via descending projections from the
vmPFC (Amaral, Price, Pitkanen & Carmichael, 1992;
Bouwmeester, Smits & Van Ree, 2002a; Bouwmeester,
Wolterink & van Ree, 2002b; Dincheva, Pattwell, Tes-
sarollo, Bath & Lee, 2014; Ghashghaei, Hilgetag &
Barbas, 2007). These results and other recent develop-
mental work (Gee, Gabard-Durnam, Flannery, Goff,
Humphreys et al., 2013a; Gee, Humphreys, Flannery,
Goff, Telzer et al., 2013b) highlight the importance of
developmental changes in connectivity within fronto-
amygdala circuitry in the modulation of heightened
emotional responses during the period of adolescence.
Similar developmental findings regarding the magni-

tude of subcortical responses to threat have been
reported in the context of rewards during adolescence
(Barkeley-Levenson & Galv�an, 2014; Bjork, Knutson,
Fong, Caggiano, Bennett et al., 2004; Bjork, Smith,
Chen & Hommer, 2010; Cohen, Asarnow, Sabb, Bilder,
Bookheimer et al., 2010; Ernst, Pine & Hardin, 2006;
Galvan, Hare, Davidson, Spicer, Glover et al., 2005;
Galvan, Hare, Parra, Penn, Voss et al., 2006; Galv�an &
McGlennen, 2013; Geier, Terwilliger, Teslovich, Vela-
nova & Luna, 2009; van Leijenhorst, Zanolie, Meel,
Westenberg, Rombouts et al., 2010). One of the first
studies to test how reward-related neural processing
occurs in adolescents relative to both children and adults
(Galvan et al., 2005, 2006) used a variant of a reward
paradigm previously used in nonhuman primates to
measure reward signals in dopamine rich neural circuitry.
The amount of reward varied from small to large. There
was an effect of reward in the ventral striatum (VS) and

orbitofrontal cortex (OFC) whereby these regions
showed the most activity to the largest monetary reward
(Galvan et al., 2005, 2006). The effect was exaggerated in
the ventral striatum for adolescents relative to both
children and adults (Galvan et al., 2006). This finding
has been replicated across numerous labs (Cohen et al.,
2010; Ernst et al., 2006; Geier et al., 2009; van Leijen-
horst et al., 2010) and parallels the developmental
evidence of an exaggerated amygdala response in ado-
lescents to aversive stimuli (Hare et al., 2008; Monk
et al., 2003). Finally, there was a monotonic decrease in
the magnitude of PFC activity to reward with age and a
decrease in response times specifically to cues that
predicted the largest reward (Galvan et al., 2005,
2006). Together these findings suggest an enhanced
capacity to integrate valenced-information into appro-
priate action with development of frontolimbic circuitry.

Individual differences in the neurodynamics of
emotion

Although as a group, adolescents tend to show intense
and frequent emotions, emotional responses and their
temporal dynamics vary by individual (Kosslyn,
Cacioppo, Davidson, Hugdahl, Lovallo et al., 2002;
Underwood, 1975). Variation in how an adolescent
reacts to emotional information can be adaptive (pro-
moting well-being) or maladaptive (resulting in psy-
chopathology). For example, persistent avoidance of cues
that no longer signal a threat is a characteristic feature of
anxiety and may rely on engagement of the amygdala
and bed nucleus of the stria terminalis (Davis, Walker,
Miles & Grillon, 2010). This pattern may generalize to
emotional cues of both valences. Specifically, avoidance
of potentially negative information or outcomes can lead
to a pattern of behavior which in turn leads to missing
opportunities for experiencing positive outcomes. This
can become a habitual behavioral pattern and a pathway
by which anxiety may precede anhedonic symptoms of
depression (Fava, Rankin, Wright, Alpert, Nierenberg
et al., 2000). This work highlights the value of focusing
on the behavioral output of the organism in addition to
the incoming valence of the incoming information.
Adolescents’ idiosyncratic life experiences, coupled

with genetic predispositions, influence how brain circuits
(e.g. subcortico-subcortical, cortico-subcortical and cor-
tico-cortical networks) interact, and how they may give
rise to individualized psychological and neurobiological
trajectories (Masten & Cicchetti, 2010). Emotional
experiences can modulate the strength of specific net-
works involved in emotion and emotional regulation.
The repeated engagement of these networks as a result of
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specific experiences can lead to approach and avoidance
tendencies to emotional situations. With development,
these networks become more fine-tuned (Dosenbach,
Nardos, Cohen, Fair, Power et al., 2010; Fair, Cohen,
Power, Dosenbach, Church et al., 2009) and the
responses become more automatic, regardless of whether
these responses are adaptive in the long-term.

Figure 2 provides a model for how changes in temporal
neurodynamics of emotion may increase the risk for, and
susceptibility to, psychopathologies that often emerge
and/or peak during adolescence. Abnormalities in the
persistence and the magnitude of activity in specific
subcortical and cortical circuits are hypothesized to
underlie susceptibility to anxiety and anhedonia. While
there are several temporal parameters of emotion, much
of the work to date focuses on the magnitude of brief
emotional responses to transient cues at a moment in time
or with repeated presentations over time. Yet other
temporal parameters such as the duration of an emotional
response (e.g. ‘ruminating’ for sustained negative affect
and an inability to ‘savor’ positive experiences) often
characterize psychiatric symptoms. The Diagnostic Sta-
tistical Manual (DSM), for example, explicitly incorpo-
rates the nature of duration in its definition of depression,
stating that ‘the essential feature of a Major Depressive
Episode is aperiod of at least 2weeks duringwhich there is

either depressed mood or the loss of interest or pleasure in
nearly all activities’ (American Psychiatric Association,
2013). The diminished capacity to regulate limbic subcor-
tical networks via cortical afferents is thought to underlie
such aberrant emotions (Ochsner et al., 2012) and be at
the very core of many affective disorders (Davidson, 1998)
that emerge during adolescence (Casey, 2015; Silk, Stein-
berg & Morris, 2003).

Developmental timing also interacts with individual
differences in emotional neurodynamics. The time at
which pubertal maturation occurs influences emotional
reactivity (Quevedo, Benning, Gunnar & Dahl, 2009;
Silk, Siegle, Whalen, Ostapenko, Ladouceur et al., 2009;
Susman, Inoff-Germain, Nottelmann, Loriaux, Cutler
et al., 1987), stress reactivity (Stroud, Foster, Papando-
natos, Handwerger, Granger et al., 2009), and the
likelihood of risk-taking behaviors (Downing & Bellis,
2009). Early puberty is associated with an increased risk
for depression (Ge & Natsuaki, 2009; Natsuaki, Biehl &
Ge, 2009), an effect that is more pronounced among
females than males (Hankin, Abramson, Moffitt, Silva,
McGee et al., 1998). Late pubertal timing appears to
heighten the risk for depression in males (Natsuaki et al.,
2009). This growing literature underscores how develop-
mental processes specific to adolescence interact with
emotional dynamics which together give rise to the

Figure 2 A model of individual differences in the temporal neurodynamics of emotion. In response to aversive stimuli, those at-risk
for anxiety disorders may show heightened amygdala activity that is sustained with delayed or reduced prefrontal activity. In
response to appetitive stimuli, those at-risk for anhedonia may show lower magnitude and less persistent ventral striatal activity
coupled with delayed or reduced prefrontal engagement.
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individual differences during this period (Arnett, 1999;
Casey et al., 2014).
Most studies of individual differences in emotion

regulation examining temporal dynamics have focused
on habituation of emotional responses to repeated
presentations of brief emotional cues over time. For
example, in the developmental study by Hare et al.
(2008) (Figure 3 [panels: a-c]), the temporal dynamics of
the neural responses to cues of threat were associated
with self-reported anxiety. Specifically, decreases in
amygdala activity to fearful face stimuli with repeated
presentations over time were negatively associated with
self-reports of trait anxiety, such that adolescents with
less habituation (more sustained amygdala activity)
reported higher trait anxiety. As mentioned earlier,
habituation of amygdala activity is associated with
greater negative coupling within fronto-amygdala cir-
cuitry. This finding is consistent with several studies

showing associations between altered fronto-amygdala
connectivity and anxiety (Bishop, Duncan & Lawrence,
2004; Davidson, 2002; Davis, 2006; Kim, Loucks,
Palmer, Brown, Solomon et al., 2011; Somerville, Kim,
Johnstone, Alexander & Whalen, 2004).
Further evidence for the role of temporal neurody-

namics in the risk for anxiety disorders comes from a
study by Blackford and colleagues (2009). They showed
that behaviorally inhibited children (a risk factor for
social and generalized anxiety disorders) had a more
rapid onset (i.e. time-to-peak) and prolonged duration of
amygdala activity to neutral faces than those who were
not behaviorally inhibited as children (Blackford, Allen,
Cowan & Avery, 2013; Blackford, Avery, Shelton & Zald,
2009). Lau (Lau, Guyer, Tone, Jenness, Parrish et al.,
2012) has found similar effects in amygdala responses of
anxious adolescents. These anxious adolescents have
prolonged amygdala reactivity compared with healthy

(a)

(d)

(f)

(e)

(b) (c)

Figure 3 Individual differences in the temporal neurodynamics of emotion. (a) Amygdala activity when detecting fearful faces is (b)
elevated among healthy adolescents compared to children and adults and the lack of (c) habituation of this activity is associated with
trait anxiety in adolescents (adapted from Hare et al., 2008). (d) Habituation of ventral striatal (VS) activity in response to appetitive
images is greater for depressed adult patients (Heller et al., 2009) as shown in the (e) time course of VS activity for healthy controls
and depressed patients (error bars indicate SEM). (f) The greater the habituation of VS activity the less self-reported daily positive
emotion in depressed patients.
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controls following evaluations by peers. Overall, these
data suggest that anxiety and risk for anxiety are
associated with sustained amygdala responses.

Atypical patterns of fronto-amygdala activity have been
implicated in depression as well. Amygdala reactivity in
response to negative words appears to be more temporally
sustained in depressed adult patients compared with
healthy controls (Siegle, Thompson, Carter, Steinhauer &
Thase, 2007). Depressed patients show sustained process-
ing of negative information (Siegle, Granholm, Ingram &
Matt, 2001) and delayed amygdala recovery after being
exposed to idiosyncratic negative stimuli (Siegle, Stein-
hauer, Thase, Stenger & Carter, 2002). Sustained amyg-
dala activity is also associated with trait rumination
(Mandell, Siegle, Shutt, Feldmiller & Thase, 2014) – a risk
factor in the development of depression (Nolen-Hoek-
sema, Wisco & Lyubomirsky, 2008). Together the evi-
dence suggests that sustained amygdala activity to
aversive cues predicts development of both depression
and anxiety. This observation is consistent with the strong
comorbidity between anxiety and depressive disorders
(Brady & Kendall, 1992) and the tendency for anxiety to
precede the onset of a depressive episode (Fava et al.,
2000). However, how these symptomatically distinct
disorders differ in affective neurodynamics could identify
novel treatment targets.

Unlike the literature on anxiety disorders, the literature
on mood disorders indicates that there are alterations in
responses to positive-valenced cues and rewards, in
addition to those involving negative-valenced cues. Most
of these studies focus on anhedonia and the magnitude of
regional brain activity to rewards rather than on temporal
dynamics per se. For example, Telzer and colleagues
examined the association between changes in depressive
symptoms in adolescents over a one-year period and the
magnitude of ventral striatum (VS) responses (Telzer,
Fuligni, Lieberman & Galv�an, 2014). Those adolescents
with the greatest VS activity when making pro-social (i.e.
other-centered) compared with self-centered decisions
were those who showed the largest decrease in depressive
symptoms over a one-year follow-up. In addition to
suggesting that the magnitude of VS activity may predict
subsequent development of depressive symptoms in
adolescents, these findings suggest that reward type is an
important consideration when examining individual dif-
ferences in neural dynamics of emotions.

A separate set of studies examining temporal dynamics
of depression highlights the important role for habitua-
tion of reward-related circuits in psychopathology and
presents a potential avenue for examining developmental
processes. In a recent reappraisal study of adults with
Major Depressive Disorder (Heller, Johnstone, Shack-
man, Light, Peterson et al., 2009), Heller showed that

depressed patients relative to healthy volunteers hadmore
rapid habituation of VS activity when upregulating (i.e.
increasing) positive emotion. Depressed patients also
displayed more rapid decoupling of VS-DLPFC connec-
tivity compared with healthy controls when increasing
positive emotion in response to viewing positively-va-
lenced images (Figure 3[panels d-f]; Heller et al., 2009).
The degree of habituation in VS activity correlated with
self-reported positive affect in daily life with depressed
patients who reported higher levels of positive affect
showing less VS habituation. A second study followed
these depressed patients over two months of antidepres-
sant treatment (Heller, Johnstone, Light, Peterson,
Kolden et al., 2013). Following pharmacological treat-
ment, those patients making the greatest improvements in
positive affect over the two months showed the largest
reductions in habituation of VS activity and VS-PFC
coupling (Heller et al., 2013). Critically, the effects
reported above were not present when examining the
mean activity (magnitude) across the scan session – the
typical metric used in brain imaging analyses. Although
this study was performed in adults, these findings
highlight the utility of examining temporal dynamics of
regulation of reward responses in psychopathology and
how they map onto individual differences.

While VS activity to positively-valenced cues and
outcomes has been associatedwith internalizing disorders,
this neural signal has been associated with externalizing
behaviors (e.g. risk taking) during adolescence as well
(Chein, Albert, O’Brien, Uckert & Steinberg, 2011;
Galvan, Hare, Voss, Glover & Casey, 2007). Specifically,
heightened VS activity to potentially rewarding cues and
situations has been associatedwith the higher likelihoodof
engaging in risky behavior during adolescence (Galvan
et al., 2007, Chein et al., 2011). Although risk-taking
behavior such as experimentation with substances can be
normative, this behavior becomes pathological for some
with subsequent craving and dependence following use
(see, e.g. Crews, He & Hodge, 2007; Jacobus & Tapert,
2013; Luciana, 2013; Padmanabhan & Luna, 2014; Spear,
2000; Steinberg, 2004; US Department of Health and
Human Services, 1999). Bechara (2005) has proposed an
imbalance model of addiction that is reminiscent of the
imbalance model of adolescence (Casey, Getz & Galvan,
2008). Specifically, Bechara (2005) suggests that neural
circuitry signaling potential pain or pleasure is hyperactive
in individuals with addiction. Accordingly, heightened
activity in these brain regions can trigger involuntary
signals that modulate, bias or even hijack the goal-driven
cognitive resources supported by the prefrontal cortex.
This imbalance between limbic subcortical or prefrontal
cortical regions is thought to impair the capacity for self-
control in adolescents, but in addiction it impairs the
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capacity to resist drugs. Other theories of addiction
similarly suggest the importance of sustaining emotional
regulation in the face of craving substances (Baker, Piper,
McCarthy, Majeskie & Fiore, 2004).
Together, these studies imply a significant role of

sustained neural signals to salient emotional cues, regard-
less of valence, during adolescence that can give rise to
different psychopathologies. A recent series of naturalistic
lab-based studies have examined sustained positive and
negative emotion referred to as ‘emotional inertia’
(Kuppens, Sheeber, Yap, Whittle, Simmons et al., 2012;
Kuppens, Allen & Sheeber, 2010), and is defined by how
long an emotion is sustained (i.e. the autocorrelation of
emotional experience over time). Young adolescents were
videotaped as they engaged in a 20-minute lab-based
interaction with a parent. Behavioral coding of nonverbal
affect and verbal content provided an estimate of both
positive and negative emotional inertia. More persistent
positive and negative emotional inertia predicted lower
self-esteem ratings and risk of having depressive symp-
toms over two years later (Kuppens et al., 2012). This
nonspecific valence effect of persistent positive and
negative emotions predicting maladaptive outcomes sug-
gests that difficulty regulating emotions over time, irre-
spective of valence, can be detrimental. This is consistent
with models of emotion duration in psychopathology
(Gruber, Eidelman, Johnson, Smith & Harvey, 2011) and
our model of individual differences in the neurodynamics
of emotion in development.

Linking levels of analysis: from biological to
real-world measures of emotional
neurodynamics

Formalizing emotions using temporal neurodynamics
may help to link emotion processes of different time-
scales across levels of analysis. A method that is
particularly well suited for understanding how emotional
dynamics change over prolonged time frames during
adolescence is Ecological Momentary Assessment
(EMA), often referred to as experience sampling. EMA
is a method that can acquire self-report, arousal,
location, ambient volume as well as other measures as
individuals traverse their everyday life (Kaplan & Stone,
2013). Recent diary studies confirm that real-world
emotions can last from a few seconds up to several
hours (Verduyn, Delaveau, Rotg�e, Fossati & Van Meche-
len, 2015; Verduyn, Van Mechelen & Tuerlinckx, 2011;
Verduyn & Lavrijsen, 2015).
EMA developmental research has found that adoles-

cence, as compared to childhood and adulthood, is a
period of increased variability in daily positive and

negative emotion (Larson, Csikszentmihalyi & Graef,
1980; Larson & Lampman-Petraitis, 1989). Moods
become progressively more negative in early adolescence
but this trend ceases around age 15 (Larson et al., 2002).
Emotional variability declines in late adolescence and for
most individuals this variability stabilizes in early adult-
hood (Larson et al., 2002). Stress has been shown to
moderate these early to late-adolescent effects such that
stressful life events are associated with greater real-world
emotional instability across adolescence (Larson et al.,
1980, 2002). This emotional lability has been suggested
to amplify adolescents’ vulnerability to the many emo-
tional challenges they face (Gunnar, Wewerka, Frenn,
Long & Griggs, 2009).
Within the period of adolescence there is significant

variability in responses to emotional cues or events.
EMA measures have been used to capture this variability
in predicting risk for anxiety and mood disorders. For
example, Silk and colleagues (Silk et al., 2003) found
that adolescents who had greater difficulty regulating
their negative affect (i.e. more prolonged self-reported
negative emotion) in response to naturalistic stressors
reported greater depressive symptom severity. In
response to challenging events, children and adolescents
with anxiety disorders report higher peak intensity of
real-world negative emotion as compared with control
youths (Tan, Forbes, Dahl, Ryan, Siegle et al., 2012).
Similarly, children and adolescents with anxiety and
depressive disorders who report higher real-world pos-
itive emotion in their daily lives show better treatment
responses to Cognitive Behavioral Therapy (CBT;
Forbes, Stepp, Dahl, Ryan, Whalen et al., 2012).
How do these measures of real-world emotional

responses over minutes to hours relate to temporal
neurodynamics of milliseconds to seconds? Forbes and
colleagues examined associations between real-world
emotion and brain activity in adolescents in the context
of positive emotion (Forbes, Hariri, Martin, Silk, Moyles
et al., 2009; Forbes, Ryan, Phillips, Manuck, Worthman
et al., 2010). They found that the magnitude of striatal
activity to winning money was predicted by real-world
baseline positive emotion and was negatively correlated
with depressive symptoms. They further found that
medial PFC activity to winning money was positively
correlated with depressive symptoms. This finding
(Forbes et al., 2010) was moderated by pubertal status
such that a more advanced pubertal status was associ-
ated with less striatal and more medial PFC reactivity.
In our own work we have combined EMA with

imaging to examine associations between individual
differences in real-world positive emotion persistence
with the duration of reward-related activity (Figure 4;
Heller, Fox, Wing, McQuisition, Vack et al., 2015). We

© 2015 John Wiley & Sons Ltd

10 Aaron S. Heller and B.J. Casey



extended current EMA methodology to develop a real-
world task whereby adult participants played a game
each day in which they won (or did not win) money. This
permitted a level of experimental control that had not
been incorporated into EMA designs. To reconstruct
each participant’s individual positive emotion time-
course, EMA sampling occurred frequently for 90
minutes after the game (every 10–12 minutes). Adults
who sustained positive emotion the longest when
winning $15 in their day-to-day life (over the course of
minutes and hours) were those with the longest duration
of ventral striatal activity when winning money (on the
order of seconds). This study highlights one way of
integrating emotional neurodynamics across multiple
time-scales and levels of analysis that combines data
from experimentally controlled studies in both real-
world and laboratory-based settings.

In the future, EMA approaches will be an important
assessment tool of an individual’s functioning as they go
about their daily life, especially as adolescents are facile
with mobile device technology. These devices may be
used to measure fluctuations in arousal, location, and
self-reported emotion, all with minimal intrusion to
individuals in the real world, in real time, as they go
about their lives. EMA approaches can supplement
current assessments of mental health, which require
individuals to reflect over many weeks – a process that
often does not reflect the person’s true level of func-
tioning (see, e.g. Redelmeier & Kahneman, 1996). The
long-term potential of these technologies could be in
supplementing psychotherapy, assessing medication
compliance and providing remote anticipation of critical
mental health events such as suicidality.

Converging methods approaches to
understanding the neurodynamics of emotion

There are a variety of experimental methods (fMRI,
ERP, pupil dilation, etc.) for examining temporal neu-
rodynamics of emotional processes on the milliseconds-
to-minute time-scale across development. While specific
physiological components rarely exceed a few minutes,
emotional experiences can persist for far longer (Nolen-
hoeksema & Morrow, 1993; Verduyn et al., 2011). Thus,
approaches that bridge multiple methods across these
time-scales may elucidate the development of emotional
dynamics.

Figure 5 illustrates a converging approach to the study
of emotional neurodynamics. This figure separates
imaging and behavioral methods for examining a variety
of emotional and cognitive psychological processes. The
temporal resolution of the imaging and behavioral
methods are distinguished by their location on the y-
axis of the figure. As such, certain imaging and behav-
ioral methods may be more amenable to studying
specific psychological processes but not others.

For example, a growing literature suggests that the
timing and spatial distribution of specific temporal
components of emotional processes change as individuals
transition through adolescence into adulthood. These
developmental changes in emotional reactivity and regu-
lation are associated with differences in behavior as
measured by reaction time, ERPs and pupil dilation that
can predict risk for the development of mood and anxiety
disorders (Hajcak, MacNamara & Olvet, 2010; Siegle,
Steinhauer, Carter, Ramel & Thase, 2003). How these
measures co-vary with one another andwhether they each

(a) (b)

Figure 4 Using temporal neurodynamics of emotions to formalize links between biological and real-world moment-to-moment
experiences. (a) Sampling moment-to-moment real-world emotion using mobile technology during a reward paradigm and brain
activity using fMRI during the same reward paradigm shows that (b) width of ventral striatal activity when winning money predicts
the duration of real-world positive emotion reported when winning money (Heller et al., 2015).

© 2015 John Wiley & Sons Ltd

The neurodynamics of emotion 11



uniquely account for risk for psychopathology or
resilience is an exciting area for continued investigation.
The high temporal precision of ERPs is a helpful tool

for examining emotional neurodynamics. The late pos-
itive potential (LPP) is an ERP component that tracks
attentional deployment to emotional stimuli and is
attenuated when individuals regulate their emotions
using strategies such as reappraisal (Hajcak et al.,
2010). The LPP has been separated into early (300-600
msec) and later components (> 600 msec) in which the
early components are likely reflexive emotional process-
ing while the later components are modulated by
effortful emotional regulation (Hajcak et al., 2010). This
latter component is centered on the frontal cortex in
adults, consistent with the previously reviewed fMRI
findings of the importance of prefrontal circuitry in the
development of emotion regulation (Kujawa, Klein &
Hajcak, 2012). These data further illustrate the impor-
tance of timing, and highlight an important role for
ERPs in examining the temporal dynamics of emotion
together with other modalities.
As the pupil is innervated by neural structures

implicated in emotional processing (e.g. the amygdala;
Siegle et al., 2003) and is associated with arousal
(Kahneman & Beatty, 1966), measures of pupil dilation
have examined the development of temporal dynamics in
emotions. Sustained pupil dilation to negative stimuli is
associated with anxiety (Price, Siegle, Silk, Ladouceur,
McFarland et al., 2013) and depression severity (Siegle,
Steinhauer, Friedman, Thompson & Thase, 2011) in
youth. Similar to the emerging ERP data, pupil dilation
appears to be corroborating temporal dynamic effects

seen using imaging and EMA – showing associations
between the persistence of certain emotional responses
and risk for psychopathology. Using a combination of
these tools (EMA, ERP, pupillometry, fMRI, etc.) may
better position us to address questions about the neural
dynamics of emotions during adolescence and which
dynamics give rise to psychopathology and which are
indicators of resilience.

Conclusions

Although several mental illnesses peak during the
teenage years, the majority of adolescents weather the
emotional turbulence of this period. The tension between
subcortical limbic regions and the prefrontal cortex
during the period of adolescence may have evolved to
help the individual adapt to the many new social,
physical, intellectual and sexual challenges of this period.
The enhanced effects of rewards and threats on behavior
and the brain may aid the adolescent in meeting these
challenges. Changes in engagement of neural systems
that activate the adolescent to meet the challenges of new
social roles may be less adaptive today with earlier
puberty and the relatively prolonged phase of adoles-
cence in Western society. Our ability to engage in self-
control, resist temptation and suppress fear requires
opportunities to engage in these forms of regulation
without the buffer of the parent in preparation for
relative autonomy and survival as an adult. These
capacities vary with development and experience, and
vary by individual. Individuals who come into adoles-
cence with poor self-control may be at greater risk for
suboptimal decisions and actions that ultimately lead to
poor outcomes. Conversely, those that are overly inhib-
ited may not sufficiently test the social waters, leading to
an anxiety disorder. A priority of future research will be
to understand behavioral and brain changes during
adolescence, employing a cognitive neuroscience
approach that examines temporal dynamics of neural
processes that could uncover patterns of potential
clinical relevance. These data, together with EMA, could
inform public health policies for modifying the environ-
ment, and guide treatments and interventions that would
have lasting beneficial effects for our young people today
and ensure a better future for them tomorrow.
One potential avenue for translation of findings per-

taining to the temporal dynamics of emotion regulation is
in personalization of psychotherapeutic intervention.
Individual differences in personality, temperament and
age may contribute to which emotion regulation strategy
may be most effective for particular individuals. For
example, such differences may predispose an individual to

Figure 5 Converging approaches to measuring the temporal
neurodynamics of emotion. Psychological processes unfold
over different time-scales and can be used to examine
temporal dynamics of emotions.
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more easilymaintain one regulation strategyover time due
to it requiring fewer cognitive resources than another. As a
result, it would logically follow that some individuals – at
different points in development – may be more amenable
to using some regulatory strategies or interventions
compared with others. This may partially explain why
some individuals benefit more from certain forms of
therapy (e.g. CBT vs. interpersonal therapy vs. mindful-
ness vs. antidepressants) than others (Cuijpers, Reynolds,
Donker, Li, Andersson et al., 2012). Some strategies may
be easier to implement across age than others and some
therapies may require more practice than others too. A
central tenet of both CBT and mindfulness techniques is
that with practice, these procedures for regulating emo-
tions become easier, more rapidly engaged and automatic
(Beck, 1979). With both adolescent and adult CBT, for
example, patients begin treatment utilizing ‘dysfunctional
thought records’ in a completely conscious, effortful
manner. Initially, this is often cumbersome and takes time
for patients to make their way through the worksheets.
However, over time and with practice patients become
more fluent and effective at recognizing the affective
symptoms that necessitate the use of such CBTskills. As a
result, patients are able to sustain negative or positive
emotion regulation for longer periods. This account is
consistent with our model of neurodynamics of emotion
and may be exploited to promote faster or more effective
and personalized treatment.

There is tremendous opportunity to better understand
how emotional regulation develops during the period of
adolescence. Parsing of emotional processes into simple
elements of magnitude, duration and habituation is
shedding new light on our understanding of how
emotions change across development and are altered in
individuals at-risk for psychopathology. Research exam-
ining temporal dynamics may benefit further from
incorporating age and psychopathology status when
examining age-specific changes in adolescence (e.g. Gee
et al., 2013a; Jarcho, Romer, Shechner, Galvan, Guyer
et al., 2015). The development of non-invasive imaging
tools for assessing the developing and behaving human
brain in real-time also has enhanced our understanding
of circuit-driven changes in affective behavior during
adolescence. Rapidly advancing mobile technology per-
mits assessment of real-world functioning that could lead
to novel diagnostics and treatments. Parsing affective
phenomena into their core components and relating
short-term biological events with longer-term psycho-
logical experiences may help to map the basic science of
adolescent affective development and improve identifi-
cation of those at-risk for psychopathology. Such
improved understanding of both real-world dynamics
of emotion and the neural circuits governing such

experiences will inform our strategies for treating
psychopathology and enhancing well-being.
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