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For generations the study of vocal development and its role in
language has been conducted laboriously, with human transcribers
and analysts coding and taking measurements from small recorded
samples. Our research illustrates a method to obtain measures of
early speech development through automated analysis of massive
quantities of day-long audio recordings collected naturalistically in
children’s homes. A primary goal is to provide insights into the de-
velopment of infant control over infrastructural characteristics of
speech through large-scale statistical analysis of strategically se-
lected acoustic parameters. In pursuit of this goal we have discov-
ered that the first automated approach we implemented is not only
able to track children’s development on acoustic parameters known
to play key roles in speech, but also is able to differentiate vocal-
izations from typically developing children and children with autism
or language delay. The method is totally automated, with no human
intervention, allowing efficient sampling and analysis at unprece-
dented scales. The work shows the potential to fundamentally en-
hance research in vocal development and to add a fully objective
measure to the battery used to detect speech-related disorders in
early childhood. Thus, automated analysis should soon be able to
contribute to screening and diagnosis procedures for early disorders,
and more generally, the findings suggest fundamental methods for
the study of language in natural environments.

vocal development | automated identification of language disorders |
all-day recording | automated speaker labeling | autism identification

ypically developing children in natural environments acquire

a linguistic system of remarkable complexity, a fact that has
attracted considerable scientific attention (1-6). Yet research on
vocal development and related disorders has been hampered by the
requirement for human transcribers and analysts to take laborious
measurements from small recorded samples (7-11). Consequently,
not only has the scientific study of vocal development been limited,
but the potential for research to help identify vocal disorders early
in life has, with a few exceptions (12-14), been severely restricted.
We begin, then, with the question of whether it is possible to
construct a fully automated system (i.e., an algorithm) that uses
nothing but acoustic data from the child’s “natural” linguistic en-
vironment, isolates child vocalizations, extracts significant features,
and assesses vocalizations in a useful way for predicting level of
development and detection of developmental anomalies. There
are major challenges for such a procedure. First, with recordings in
a naturalistic environment, isolating child vocalizations from ex-
traneous acoustic input (e.g., parents, other children, background
noise, television) is vexingly difficult. Second, even if the child’s
voice can be isolated, there remains the challenge of determining
features predictive of linguistic development. We describe proce-
dures permitting massive-scale recording and use the data col-
lected to show it is possible to track linguistic development with
totally automated procedures and to differentiate recordings from
typically developing children and children with language-related
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disorders. We interpret this as a proof of concept that automated
analysis can now be included in the tool repertoire for research on
vocal development and should be expected soon to yield further
scientific benefits with clinical implications.

Naturalistic sampling on the desired scale capitalizes on a battery-
powered all-day recorder weighing 70 g that can be snapped into
a chest pocket of children’s clothing, from which it records in
completely natural environments (SI Appendix, “Recording De-
vice”). Recordings with this device have been collected since 2006
in three subsamples: typically developing language, language de-
lay, and autism (Fig. 14 and SI Appendix, “Participant Groups,
Recording and Assessment Procedures”). In both phase I (2006—
2008) and phase II (2009) studies (ST Appendix, Table S2), parents
responded to advertisements and indicated if their children had
been diagnosed with autism or language delay. Children in phase I
with reported diagnosis of language delay were also evaluated by
a speech-language clinician used by our project. Parents of chil-
dren with language delay in phase II and parents of children with
autism in both phases supplied documentation from the di-
agnosing clinicians, who were independent of the research. Par-
ent-based assessments obtained concurrently with recordings (S
Appendix, Table S3) confirmed sharp group differences concor-
dant with diagnoses; the autism sample had sociopsychiatric
profiles similar to those of published autism samples, and low
language scores occurred in autism and language delay samples
(Fig. 1B and SI Appendix, Figs. S2-S4 and “Analyses Indicating
Appropriate Characteristics of the Participant Groups”).

Demographic information (Fig. 1B and SI Appendix, Tables S3
and S4) was collected through both phases: boys appeared dis-
proportionately in the disordered groups, mother’s educational
level (a proxy for socioeconomic status) was higher for children
with language disorders, and general developmental levels were
low in the disordered groups. A total of 113 children were matched
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A Number of children Number of all-day Total duration Total child utterances

Entire sample

Total (Phase | + Phase Il) recordings of recordings in hours in millions
Typl%a_"'l‘é E’:{‘)’:lf“s""g 106 ( 76 + 30) 802 12,813 1.838
La;‘gff‘:ﬂgi'tahy:d 49 (28 +21) 333 5317 0.607
oamem 77 (34+43) 3s1 5586 0.69
Total 232 (138 +94) 1486 23,716 3.139
Developmental Mother's mean Mean Mean Snapshot
B Entire sample Gen.der: age in months  education level real age in language score
Plohcicpinzle (CDI General) (scaled 1-8) months (expected mean = 100)
Typical: 106 children 0.453 29.291 5.113 28.176 97.982
Standard error 0.049 0.867 0.202 0.902 1.783
Delayed: 49 children 0.673 25.333 5.449 28.963 67.852
Standard error 0.068 1.016 0.259 1.069 2.961
Autism: 77 children 0.831 22.712 6.117 35.928 40.675
Standard error 0.043 0.850 0.213 0.869 2.670
Significant group differences Yes Yes Yes Yes Yes
Subsamples matched on Developmental ~ Mother's mean Mean Mean Snapshot
C gender, mother’s ed., Geqder: agein months  education level  real age in language score
and development age Plepeicgipale (CDI General) (scaled 1-8) months (expected mean = 100)
Typical: 39 children, 16-36 mo. 0.744 24.026 5.795 23.727 101.729
Standard error 0.071 0.567 0.333 0.774 3.305
Delayed: 39 children, 16-42 mo. 0.744 23.615 5.359 29.613 67.138
Standard error 0.071 0.891 0.276 1.011 3.381
Autism: 35 children, 18-48 mo. 0.743 24.429 5.714 36.833 43.343
Standard error 0.075 1.435 0.319 1.206 3.981
Significant group differences No No No Yes Yes

Fig. 1.

Demographics. (A) Characteristics of the child groups and recordings. (B) Demographic parameters indicating that groups differed significantly in

terms of gender, mother’s education level (a strong indicator of socioeconomic status), and general development age determined by the Child Development
Inventory (CDI) (40), an extensive parent questionnaire assessment obtained for 86% of the children, including all those in the matched samples. This CDI age
equivalent score is based on 70 items distributed across all of the subscales of the CDI, including language, motor development, and social skills. The groups
also differed in age and in scores on the LENA Developmental Snapshot, a 52-item parent questionnaire measure of communication and language, obtained
for all participants. (C) Demographic parameters for subsamples matched on gender, mother’s education level, and developmental age.

on these variables (Fig. 1C) to allow comparison with results on the
entire sample.

Our dataset included 1,486 all-day recordings from 232 children,
with more than 3.1 million automatically identified child utterances.
The signal processing software reliably identified (SI Appendix,
Tables S6 and S7) sequences of utterances from the child wearing
the recorder, discarded cries and vegetative sounds, and labeled the
remaining consecutive child vocalizations “speech-related child
utterances” (SCUs; SI Appendix, Fig. S5). Additional analysis di-
vided SCUs into “speech-related vocal islands” (SVIs), high-energy
periods bounded by low-energy periods (S Appendix, Figs. S6 and
S7). Roughly, the energy criterion isolated salient “syllables” in
SCUs. Analysis of SVIs focused on acoustic effects of rhythmic
“movements” of jaw, tongue, and lips (i.e., articulation) that un-
derlie syllabic organization, and on acoustic effects of vocal quality
or “voice.” Infants show voluntary control of syllabification and
voice in the first months of life and refine it throughout language
acquisition (15, 16). Developmental tracking of these features by
automated means at massive scales could add a major new com-
ponent to language acquisition research. Given their infrastructural
character, anomalies in development of rhythmic/syllabic articula-
tion and voice might also suggest an emergent disorder (17, 18).

SVIs were analyzed on 12 infrastructural acoustic features
reflecting rhythmic/syllabic articulation and voice and known to
play roles in speech development (19) (SI Appendix, “Automated
Acoustic Feature Analysis”). The features pertain to four con-
ceptual groupings (SI Appendix, Table S5): (i) rhythm/syllabicity
(RhSy), (if) low spectral tilt/high pitch control (LtHp, designed to
reflect certain voice characteristics), (iii) high bandwidth/low
pitch control (BwLp, designed to reflect additional voice charac-
teristics), and (iv) duration. The 12 features were assigned to the
four groupings based on a combination of infrastructural vocal
theory (19) and results of principal component (PC) analysis
(PCA; SI Appendix, Table S10 and Fig. S12).
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The algorithm determined the degree to which each SVIshowed
presence or absence of each of the 12 features, providing a measure
of infrastructural vocal development on each feature. Each SVI
was classified as plus or minus (i.e., present or absent) for each
feature. The number of “plus” classifications per parameter varied
from more than 2,400 per recording on the voicing (VC) parameter
to fewer than 100 on the wide formant bandwidth parameter (S
Appendix, Fig. S8). To adjust for differences in length of recordings
and amount of vocalization (i.e., “volubility”) across individuals
and recordings, we took the ratio for each parameter of the number
of SVIs classified as plus to the number of SCUs. This yielded 12
numbers, one for each parameter at each recording, reflecting per-
utterance usage of the 12 features. The SVI/SCU ratio also varied
widely, from more than 1.3 per utterance for VC to fewer than
0.05 for wide formant bandwidth (SI Appendix, Fig. S9). The 12-
dimensional vector composed of SVI/SCU ratios normalized
for age was used to predict vocal development and to classify
recordings as pertaining to children with or without a language-
related disorder (SI Appendix, “Statistical Analysis Summary”).

The acoustic features were thus chosen as developmental indi-
cators and as potential child group differentiators. Aberrations of
voice have been noted from the first descriptions of autism spec-
trum disorders (ASDs) (20, 21); subsequent research has added
evidence of abnormalities of prosody (10, 22-25) and articulatory
features affecting rhythm/syllabicity (11, 26). Still, the standard
diagnostic reference for mental/behavioral disorders (27) does not
include vocal characteristics in assessment of ASD. Reasons ap-
pear to be that evidence of vocal abnormalities in autism is scat-
tered and often vague, criteria for judgment of vocalization are not
typically included in health professionals’ educational curricula,
and reliability of judgment for vocal characteristics is problematic
given individual variability (10, 26). Autism diagnosis is based
heavily on “negative markers” such as joint attention deficit (28—
31) and associated communication deficits (32-35). Abnormal
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vocal characteristics would constitute a positive marker that might
enhance precision of screening or diagnosis (31).

Most children with language-related disorders, even without au-
tism, also show articulation and voice anomalies (36-39). Our work
explores the possibility that the automated approach may be useful
in discriminating typical from language-disordered development, as
well as in discriminating autism from language delay. The power of
the automated approach will presumably depend on its ability to
predict changes with age in typically developing children.

Results

Correlations between child age and SVI/SCU ratios for the 12
parameters showed clear evidence that the automated analysis
predicts development: for the typically developing and language-
delayed groups, five of the 12 correlations were greater than +0.4,
at a high level of statistical significance of P < 10~'° (Fig. 24 and SI
Appendix, Table S9 A-D); all 12 correlations with age for the
typically developing sample and seven of 12 for the language-
delayed sample were statistically significant. The autistic sample, to
the contrary, showed little evidence of development on the
parameters; all their correlations of acoustic parameters with age
were less than +0.2, and only two were statistically reliable (S
Appendix, Table S9 E and F). The typically developing group
showed reliable negative correlations (P < 10~*) on three param-
eters for which the other groups showed positive correlations, il-
lustrating that certain vocal tendencies diminished with age in the
typically developing group but did not diminish or increased with
age in the others. Correlations of the 12 parameters with each
other also revealed coherency within the four parameter groupings
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Fig. 2. Results of correlational analysis and MLR analysis. (A) Correlations of
acoustic parameter SVI/SCU ratio scores with age across the 1,486 recordings. In
10 of 12 cases, both typically developing and language-delayed children
showed higher absolute values of correlations with age than children with
autism (S/ Appendix, Table S9 A-F). All 12 correlations for the typically de-
veloping sample and seven of 12 for the language-delayed sample were sta-
tistically significant after Bonferroni correction (P < 0.004). The autistic sample,
conversely, showed little evidence of development on the parameters; all
correlations of acoustic parameters with age were lower than +0.2. (B) MLR for
typically developing and autism samples. Blue dots represent real and pre-
dicted age (i.e., “predicted vocal development age”) for 802 recordings of
typically developing children based on SVI/SCU ratios for the 12 acoustic
parameters (r=0.762, R?>=0.581). Red dots represent 351 recordings of children
with autism, for which predicted vocal development ages (r=0.175, R>= 0.031)
were determined based on the typically developing MLR model. Each red di-
amond represents the mean predicted vocal development level across
recordings for one of the 77 children with autism. (C) MLR for the typically
developing (blue) and language-delayed samples (333 recordings; gold squares
for 49 individual child averages; r = 0.594, R?=0.353).
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for all three child groups, but the autistic sample showed many
more correlations not predicted by the four parameter groupings
than the other child groups (SI Appendix, Table S9 A-F), a result
suggesting children with autism organize acoustic infrastructure
for vocalization differently from typically developing children or
children with language delay.

Multiple linear regression (MLR) also illustrated development
and group differentiation. The 12 acoustic parameter ratios (SVIs/
SCUgs) for each recording were regressed against age for the typi-
cally developing sample, yielding a normative model for devel-
opment of vocalization. Coefficients of the model were used to
calculate developmental ages for autistic and language-delayed
recordings, displayed along with data for the typically developing
recordings in Fig. 2 B and C. The MLR model for the 802
recordings from the typically developing sample accounted for
greater than 58% of variance in predicted age. MLR for the 106
typically developing children yielded yet higher prediction, ac-
counting for more than 69% of variance, and suggesting that the
automated analysis can provide a strong indicator of vocal de-
velopment within this age range.

The correlation of predicted vocal developmental age with real
age based on MLR was much higher for the typically developing
and language-delayed samples (Fig. 2C) than for the autism sam-
ple (Fig. 2B), in which the predicted levels were also generally
considerably below those of the typically developing sample. The
acoustic parameters within the four theoretical groupings were
also regressed against age (SI Appendix, Fig. S11. A-D), with results
suggesting strong differentiation of the typically developing and
autistic samples for three of the four groupings (RhSy, LtHp, and
duration). The low correlations with age for the autism sample in
these MLR analyses based on the typically developing model do
not imply that the autism sample showed no change with regard to
the acoustic parameters across age. On the contrary, an in-
dependent MLR model for the autism sample alone using all 12
acoustic parameters as predictors accounted for more than 16% of
variance (P < 0.001), indicating that the autism group did develop
with age on the parameters. However the nature of the change with
regard to the parameters across age was clearly different in the two
groups, as indicated by the MLR results.

Linear discriminant analysis (LDA) and linear logistic re-
gression were used to model classification of children into the three
groups based on the acoustic parameters. Here the ratio scores
(SVIs/SCUs) for each of the 12 parameters were first standardized
by calculating z-scores for each recording in monthly age intervals.
Leave-one-out cross-validation (LOOCV) was the main holdout
method to verify generalization of results to recordings not in the
training samples (S/.Appendix, “Statistical Analysis Summary”). Six
pairwise comparisons (SI Appendix, Fig. S1), each based on 1,500
randomized splits into training and testing (i.e., holdout) samples
of varying sizes, confirmed that LOOCYV results were consistently
representative of midrange randomly selected holdout results, and
thus provide a useful standard for the data reported in the sub-
sequent paragraphs. LOOCYV results for LDA and linear logistic
regression were nearly identical (SI Appendix, Table S1); the re-
mainder of the present report thus focuses on LDA only.

The results indicated strong correct identification of autism
versus typical development (%, P < 1072"), with sensitivity (i.e., hit
rate) of 0.75 and specificity (i.e., correct rejection rate) of 0.98,
based on a threshold (i.e., cutoff) posterior classification proba-
bility of 0.52 (Fig. 34). At equal-error probability, sensitivity and
specificity were 0.86 (crossover point, Fig. 3B). LDA also differ-
entiated the typically developing sample from a combined autism
and language-delay sample. At a cutoff of 0.56, specificity (i.e.,
correct identification of typically developing children) was 0.90.
At the same cutoff, 80% of the autism sample and 62% of the
language-delay sample were correctly classified as not being in the
typically developing group (Fig. 3C). Sensitivity and specificity at
equal error probability for classification of children as being or not

Oller et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1003882107/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1003882107

L T

/

1\

=y

. @ Autism, N =77
@0 oM@ ® 00000 @@@eo oo

N of largest bubble = 27

»......... o

@® Typically developing, N =106

N of largest bubble = 26

00 01 02 03 04 05 06 07 08

Proportion correct classifications

0.00.10.20.3040.50.60.70.809 1.0

. ®  Autism, N=77
e @0 © 000PO® @o ®
@

Language delayed, N = 49

N of largest bubble = 7
Q@R O 00 0

® Typically developing, N = 106

N of largest bubble =23

N of largest

bubble =
°© PO ® OO 00w OWOO WD O

0.00.10.20.30.40.50.60.70.80.9 1.0

00 01 02 03 04 05 06 07 08 09
Estimated posterior probability of
“not typically developing” classification

1.0
Posterior probability threshold for
“not typically developing” classification

Fig. 3. LDA with LOOCV indicating differentiation of child groups. Estimated classification probabilities were based on the 12 acoustic parameters. Results
are displayed in bubble plots, with each bubble sized in proportion to the number of children at each x axis location (the number of children represented by
the largest bubble in each line is labeled). The plots indicate classification probabilities (Left) and proportion-correct classification (Right) for LDA in (A and B)
children with autism (red) versus typically developing children (blue) and (C and D) a combined group of children with autism (red) or language delay (gold)

versus typically developing children (blue).

being typically developing was 0.79 (Fig. 3D). Fig. 44 supplies
LDA data on all six possible binary classificatory comparisons of
the three child groups and illustrates strongest discrimination of
the autism versus typically developing samples (P < 107%'). For the
entire samples (left column), both typically developing and autism
groups were also very reliably (P < 107°) differentiated from the
language-delayed group, although sensitivity/specificity was lower
(0.73 and 0.70) than in the differentiation of the typically de-
veloping from autism groups or in differentiation of the typically
developing from the combined language disordered groups.

Fig. 44 also reveals only slightly lower levels of group differ-
entiation for modeling with LOOCYV on the matched sample of
113 children. Holdout models (i.e., not based on LOOCV) with
training on phase I data and testing on phase II data revealed
similar results. Models based on LOOCYV training for all record-
ings were also used to determine sensitivity and specificity rates on
only the first recording available for each child, again with similar
results seen in Fig. 44. The first-recording analysis suggests the
automated approach can discriminate groups quite reliably with
a single all-day recording for each child.

Fig. 4B compares mean posterior probabilities of autism classi-
fication (LOOCV models) in subsamples for one configuration
only: typically developing versus autism. Group differentiation was
robust, applying to both genders and to higher and lower socio-
economic status (indicated by mother’s reported education level).
Further, differentiation was strong for subgroups matched on lan-
guage development and expressive language measures, for the au-
tism subgroup reported to be speaking in words, as well as for
subgroups with high and low within-group language scores. Addi-
tional comparisons in Fig. 4B illustrate that subgroups diagnosed
with autism through widely used tests documented in clinical
reports supplied by parents (SI Appendix, Table S3) were differ-
entiated sharply from the typically developing sample by the auto-
mated analysis. All comparisons of typically developing and autistic
samples in Fig. 4B were highly statistically reliable (P < 10'").
Additional evaluations of posterior probabilities for individuals and
subgroups of special interest in the autism and language-delay
samples further illustrated the robustness of the automated analysis
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in group differentiation (S1Appendix, “Results: Individual Children
and Subgroups of Particular Interest in the Group Discrimination
Analyses”; and SI Appendix, Figs. S14 and S15). Very low correla-
tions of age with posterior probabilities (» = —0.07 and r = 0.11 for
autism and typical samples, respectively) suggest group differenti-
ation by this automated method was not importantly dependent on
age within these samples (SI Appendix, Fig. S16).

Long-term success of automated vocal analysis may depend on
the “transparency” of modeling, the extent to which results are in-
terpretable through vocal development theory. The present work
was based on such a theory (SI Appendix, “The 12 Acoustic
Parameters” and “Research in Development of Vocal Acoustic
Characteristics”), and thus provides a beginning for explaining why
the model worked in, for example, predicting age. In pursuit of such
explanation we further evaluated correlations among SVI/SCU
ratios for the 12 acoustic parameters. To alleviate confounding
effects of intercorrelations among the parameters, it was useful to
project the data along orthogonal principal components (PCs). The
PCA (SI Appendix, Table S10 and Fig. S12 A-C) yielded one
dominant PCin the typically developing sample (analysis conducted
on all 802 recordings without differentiation of the recordings within
child), accounting for 40% of variance, more than double that of any
other PC. The dominant PC for the typically developing group was
highly correlated with all of the a priori RhSy (rhythm/syllabicity)
parameters: (i) canonical transitions (r = 0.88), reflecting for each
recording the extent to which “syllables” (i.e., SVIs) had rapid for-
mant transitions required in mature syllables, (if) voicing (VC; r =
0.78), indicating whether SVIs had periodic vocal energy required
for mature syllables, and (iii ) spectral entropy (» = 0.71), indicating
whether variations in vocal quality of SVIs were typical of variations
occurring in mature speech. The dominant PC was also highly cor-
related with a parameter from the a priori duration grouping: (i)
medium duration (r = 0.91), reflecting SVI durations in the mid-
range for mature speech syllables.

When the four PCs of the typically developing sample were
regressed against age at the child level, this dominant PC played
the central role in age prediction (R* = 0.55, P < 107*°). The
B-coefficient (0.73) for the dominant PC was more than three
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Fig. 4. LDA showing group discrimination for various configurations and subsamples. (A) LDA data on the six binary configurations of the three groups for
the entire sample (N = 232; LOOCV); subsamples matched on gender, mother’s education level, and developmental level (n = 113; LOOCV); a different holdout
method in which, instead of LOOCV, training was conducted on phase | (2006-2008) data (n = 138) and testing on phase Il (2009) data (n = 94); and a testing
sample based for each child on the first recording only (N = 232; LOOCV). (B) Bar graph comparisons for subsamples illustrating robustness of group dif-
ferentiation in the autism versus typical development configuration only (based on LOOCV modeling). Means were calculated over logit-transformed pos-
terior probabilities (PPs) of autism classification, then converted back to PPs. All comparisons showed robust group differentiation, including (from left to
right) the entire sample (N = 232), boys (typical, n = 48; autism, n = 64), girls (typical, n = 58; autism, n = 13), children of higher socioeconomic status (SES) as
indicated by mother’s education level >6 on an eight-point scale (typical, n = 42; autism, n = 49) and lower SES (typical, n = 64; autism, n = 28). To assess the
possibility that “language level” may have played a critical role in automated group differentiation, we compared 35 child pairs matched for developmental
age (typical development group, mean age of 22.6 mo; autism group, mean age of 22.7 mo) on the Snapshot, a language/communication measure (S/
Appendix, "Participant Groups and Recording Procedures”), and 46 child pairs matched on the raw score from a single subscale of the CDI (40), namely, the
expressive language subscale (typical development group, mean score of 21.6; autism group, mean score of 21.5), and we found robust group differentiation
on PPs. Similar results were obtained for 48 children in the autism sample whose parents reported they were using spoken words meaningfully and for typical
and autism samples split at medians into subgroups of high or low language (High Lang, Low Lang) level on the Snapshot developmental quotient. A
subsample of 29 children with autism for whom diagnosis had been based on the Autism Diagnostic Observation Schedule (ADOS) (41) and another of 24
children with autism diagnosed with the Childhood Autism Rating Scale (CARS) (42) also showed robust group discrimination for PPs. Finally, in phase Il
(typical, n = 30; autism, n = 77) administration of both the Child Behavior CheckList (CBCL) (43) and the Modified Checklist for Autism in Toddlers (MCHAT) (44)
had supported group assignment based on diagnoses, and group differentiation of PPs for these children using the automated system was unambiguous.

times that of any other PC, suggesting that the typically developing
children’s control of the infrastructure for syllabification provided
the primary basis for modeling of vocal development age (S
Appendix, “Principal Components Analysis Indicating Empirical
and Theoretical Organization of the Parameters™).

PCA at the child level for the autism sample showed a consid-
erably different structure of relations between acoustic parame-
ters and PCs, and importantly, the first PC for the autism sample
showed low correlations with the a priori RhSy acoustic parame-
ters (S Appendix, Table S10 and Fig. S12). When the four PCs for
the autism sample were regressed against age, the PC with high
correlations on the a priori RhSy parameters (PC2 in this case)
yielded a B of 0.16, less than one fourth of that occurring for the
typically developing sample. Prediction of age by this autism PC
was not statistically significant. Thus, in the typically developing
sample, the PC most associated with control of the RhSy param-
eters was highly predictive of age, but in the autism sample, no
such predictiveness was found.

To quantify the role of RhSy parameters in group differentia-
tion, the PCA model for the first four PCs in the typically de-
veloping sample was applied to child-level data from all three
groups and then converted to standard scores based on the mean
and SD for the typically developing group. Analysis of the mean
standard scores (S Appendix, Fig. S13) showed that, indeed, the
PC associated with RhSy accounted for more than 3.5 times as
much variance in group differentiation (adjusted R* = 0.21) as any
of the other PCs, suggesting that children’s control of the in-
frastructure for syllabification may have played the predominant
role in group differentiation.

13358 | www.pnas.org/cgi/doi/10.1073/pnas.1003882107

Discussion

The purpose of our work is fundamentally scientific: to develop
tools for large-scale evaluation of vocal development and for re-
search on foundations for language. The outcomes indicate that the
time for basic research through automated vocal analysis of massive
recording samples is already upon us. A typically developing child’s
age can be predicted at high levels (accounting for more than two
thirds of variance) based on this first attempt at totally automated
acoustic modeling with all-day recordings. The automated pro-
cedure has proven sufficiently transparent to offer suggestions on
how the developmental age prediction worked—the primary factor
appears to have been the child’s command of the infrastructure for
syllabification, a finding that should help to guide subsequent in-
quiries. From a practical standpoint, the present work illustrates
the possibility of adding a convenient and fully objective evaluation
of acoustic parameters to the battery of tests that is used with in-
creasing success to identify children with language delay and au-
tism. It appears that childhood control of the infrastructural
features of syllabification played the central role in group differ-
entiation, just as it played the central role in tracking development.
The automated method showed higher accuracy in differentiating
children with and without a language disorder than in differenti-
ating the two language disorder groups (autism and language delay)
from each other. Future work will be directed to evaluation of
additional vocal factors that may differentiate subgroups of lan-
guage disorder more effectively.

Based on the results reported here, there appears to be little
reason for doubt that totally automated analysis of well selected
acoustic features from naturalistic recordings can provide a mon-
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itoring system for developmental patterns in vocalization as well
as significant differentiation of children with and without dis-
orders such as autism or language delay. We are optimistic that the
procedure can be improved, as this is our first attempt at auto-
mated infrastructural modeling, with all parameters designed and
implemented in advance of any analysis of recordings. To date
there have still been no adjustments made in the theoretically
proposed parameters. Additional modeling (e.g., hierarchical,
age-specific, nonlinear) can be invoked, modifications can be ex-
plored in acoustic features, and larger samples, especially from the
entire spectrum of ASDs and other language-related disorders,
can help tune the procedures. The future of research on vocal
development will profit from the combination of traditional
approaches using laboratory-based exhaustive analysis of small
samples of vocalization with the enormous power that is now
clearly possible to command through automated analysis of nat-
uralistic recordings.
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Materials and Methods
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Methods: (i) statistical analysis summary, (ii) recording device, (jii) participant
groups and recording and assessment procedures, (iv) automated analysis
algorithms, (v) the 12 acoustic parameters, and (vi) reliability of the automated
analysis. The statistical analysis summary provides details regarding methods of
prediction of development using MLR, as well as differentiation of child groups
using LDA and logistic regression. An empirical illustration of reasons for using
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cedures used in the present work as well as recruitment procedures for children
in the three groups are explained along with selection criteria. Additional data
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Automated analysis algorithms are described along with reliability data. All
procedures were approved by the Essex Institutional Review Board.
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