Genetic polymorphisms related to behavioral approach and behavioral inhibition scales

Sheri L. Johnson a,⇑⁎, Charles S. Carver b, Jutta Joormann c, Michael L. Cuccaro d

a University of California, Berkeley, Department of Psychology, 3210 Tolman Hall #1650, Berkeley, CA 94720, United States
b University of Miami, Department of Psychology, PO Box 248185, Coral Cites, FL 33124, United States
c Yale University, Department of Psychology, United States
d Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL 33136, United States

A R T I C L E I N F O

Article history:
Received 5 June 2015
Received in revised form 7 September 2015
Accepted 11 September 2015
Available online 25 September 2015

Keywords:
Behavioral approach
Behavioral inhibition
Genetic polymorphism
BDNF
OPRM1

A B S T R A C T

Genetic polymorphisms relevant to behavioral approach and behavioral inhibition are examined, using a polygenic approach while also considering the role of early adversity. Undergraduates (N = 343) completed the well-validated Behavioral Inhibition System/Behavioral Activation System (BIS/BAS) scales and provided blood for genotyping. The BDNF met allele was related to higher BIS scores. OPRM1 status interacted with a measure of early adversity to predict the BAS Reward Responsiveness subscale. Results provide additional support for the validity of the BIS/BAS scales, and suggest combined genetic and environmental influences on the development of these traits.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The behavioral approach system (BAS) and the behavioral inhibition system (BIS) have been conceptualized as broad-band motivational systems that guide behavioral and cognitive responses to cues of reward and threat, respectively (Gray, 1990). There are stable individual differences in the sensitivity of these systems (Brown, 2007), and neural correlates of these systems have also been identified (Gray & McNaughton, 2000; Knutson & Greer, 2008).

Extreme levels of BIS and BAS sensitivity have both been hypothesized to relate to diverse psychopathologies. For example, high BIS sensitivity relates to anxiety disorders, whereas low BAS sensitivity, perhaps in combination with high BIS sensitivity, relates to depressive disorders (Carver, Johnson, & Joormann, 2008; Gray, 1987; Nelson et al., 2013). Indeed, given the strong ties to multiple psychopathologies, BAS and BIS have been identified as two of the five core dimensions that form the centerpiece of new funding initiatives at NIMH (term research domain operating criteria, or RDoC; Cuthbert & Insel, 2013).

1.1. Genes related to BAS and BIS sensitivity

Considerable research in both animals and humans suggests that the sensitivity of these systems is heritable (Bogdan & Pizzagalli, 2009). Several studies have examined specific genetic polymorphisms and BAS sensitivity. Most have focused on genes related to dopamine function, including those related to D2, D3, and D4 receptors, and the dopamine transporter (DAT). In studies of neural responses to reward, researchers have documented effects for ANKK1, related to synthesis of dopamine (Felsted, Ren, Chouinard-Decorte, & Small, 2010), the 141C Ins/Del polymorphism related to the D2 receptor (Forbes et al., 2009), DRD4 (Camara et al., 2010), and DAT1 (SLC6A3; Dreher, Kohn, Kolachana, Weinberger, & Berman, 2009). Carriers of the 9-repeat allele of the DAT1 polymorphism have also been found to take more risks in pursuit of reward during a decision-making task (Zhong et al., 2009) and to show more striatal response to reward cues (Zhong, Chark, Ebstein, & Chew, 2012).

Genes have also been considered that are indirectly relevant to dopamine function, such as the Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes. The COMT gene guides the production of the enzyme COMT, which is involved in catalysis of dopamine and other catecholamines (Chen et al., 2004). Among other neurobiological effects, the BDNF gene has effects on the mesolimbic dopamine pathway (Berton et al., 2006; Guillen et al., 2001). Some evidence has linked both COMT and BDNF genes to responses to reward. As examples, the met allele of the Val158Met COMT polymorphism has been found to relate to greater neural and psychophysiological response to reward anticipation (Dreher et al., 2009; Marco-Pallares et al., 2009). Recent research also suggests involvement of the opioid receptor mu subunit gene (OPRM1) in neural responses to reward (Ray et al., 2014). Mu-opioid receptors are located in the nucleus accumbens and appear...
related to wanting and liking of naturally occurring rewards as well as drugs of abuse (Cui et al., 2014; Kawahara et al., 2013).

Polymorphisms have also been considered as correlates of BIS sensitivity. Few genes have received as much attention as the serotonin transporter gene, which has been linked to amygdala activation in response to threat cues (Munafo, Brown, & Hariri, 2007). Others, however, have suggested that this gene relates not so much to threat sensitivity (Sen, Burmeister, & Gersh, 2005) as to more general constraint over emotional responses (Carver et al., 2008). This suggests the importance of considering serotonergic polymorphisms in regard to both BIS and BAS levels.

Other polymorphisms have also shown promise regarding BIS sensitivity. The Val variant of COMT has been related to greater engagement of the prefrontal cortex in response to emotionally-relevant stimuli (Mier, Kirsch, & Meyer-Lindenberg, 2010) and to elevated psychophysiological responses to threat cues (Montag et al., 2008a). The BDNF MET66+ variant has also been related to amygdala activation to threat cues (Montag, Reuter, Newport, Elger, & Weber, 2008) and higher harm avoidance (Montag et al., 2010). The COMT and BDNF genes thus would also appear relevant to both BIS and BAS sensitivities.

1.2. Genes related to Carver and White BIS/BAS scale scores

The Carver and White (1994) BIS/BAS self-report scales are widely used and well-validated. Several large scale studies have found these scales to have robust links with multiple psychopathologies (Brown, 2007; Johnson, Turner, & Iwata, 2003), and longitudinal research supports these links as well (Alloy et al., 2008; Naragon-Gainey, Gallagher, & Brown, 2013). Twin studies support a genetic contribution, with heritability estimates of .28 to .35 in BIS/BAS scale scores (Takahashi et al., 2007).

Despite the evidence for heritability, findings relating genetic polymorphisms to these scales have been mixed. In studies using the BAS scales, carriers of at least one A1 allele of ANKK1 have been found to have higher BAS Reward responsiveness scores (Davis et al., 2008; Lee et al., 2007) and lower BAS Drive scores (Felsted et al., 2010). DRD3 was related to BAS Drive in one sample, but not in a second sample (Henderson et al., 2000). Other null findings have been reported regarding other dopaminergic genes: BAS self-report scales were not found to relate to the DAT1 (Jorm et al., 2000), DRD2 markers of the −141 Ins/Del gene (Davis et al., 2008), the C957T mutation related to the D2 receptor (Davis et al., 2008), or COMT (Henderson et al., 2000).

Recent work suggests that composite scores, which aggregate the number of risk alleles across candidate polymorphisms, may be more powerful than single polymorphisms for predicting behavioral outcomes (Nikolova, Ferrell, Manuck, & Hariri, 2011). In one study, a composite score composed of several serotonergic polymorphisms was correlated with BAS scores among persons who had been exposed to early adversity (Pearson, McGeary, & Bevers, 2014).

In contrast to the mixed findings with BAS scales, research findings regarding genetic polymorphisms with the BIS scale have yielded null results. That is, BIS scores have not been found to relate to COMT (Henderson et al., 2000), DAT1 (SLC6A3) (Jorm et al., 2000), or the serotonin transporter gene, which has been linked to amygdala activation in response to threat cues (Munafo, Brown, & Hariri, 2007). Others, however, have suggested that this gene relates not so much to threat sensitivity (Sen, Burmeister, & Gersh, 2005) as to more general constraint over emotional responses (Carver et al., 2008). This suggests the importance of considering serotonergic polymorphisms in regard to both BIS and BAS levels.

Second, many of the above studies have failed to consider that effects of polymorphisms on behavior often differ by gender and ethnicity. For example, effects of COMT on BIS may be stronger for men than for women (Chen et al., 2011), and a COMT effect might be missed if it existed for only one gender. Third, some genes that would seem relevant conceptually, such as OPRM1 (described above) or tryptophan hydroxylase genes (which guide the synthesis of serotonin) have not been tested in relation to the BIS/BAS scales. Fourth, early life adversity shapes tendencies toward threat and reward sensitivity (Burghy et al., 2012; Henderson et al., 2000) and yet has not been considered as a potentiating factor in evaluating genetic contributions to threat and reward sensitivity.

Last, it is worth noting that more promising results have been obtained when serotonergic composite scores were used in place of specific polymorphisms in the prediction of BAS scores (Pearson et al., 2014). Composite scores have not been considered in understanding the role of the dopaminergic genes implicated in BAS function, nor have composite scores been used to assess effects of genes on BIS.

The analyses reported here addressed these concerns while assessing the contribution of genetic polymorphisms to BIS and BAS self-report scores. Drawing on the above literature, we hypothesized that BAS would be related to a dopamine polymorphism composite score, and that both BIS and BAS would be related to a serotonergic polymorphism composite score, COMT, and BDNF. We further hypothesized that OPRM1 would be related specifically to the BAS Reward Responsiveness subscale. We hypothesized that early family adversity would amplify the effects of genetic polymorphisms on the BIS/BAS scales, and we included gender and ethnicity in analyses as control variables.

2. Method

The 343 undergraduates (221 female; age M = 18.79, SD = 1.93). The sample was approximately half non-Hispanic Whites (178), a quarter Hispanic (77), with fewer African American (19), Caribbean (14), Asian (26), “Other” (16), and non-reporting (18).

Study procedures were approved by the university ethics board before data collection began. After completing informed consent, participants completed the BIS/BAS scales in group sessions. A departmental website provided opportunities for students to participate in further sessions 1–3 weeks later, in which blood was drawn for genotyping and other measures were completed in group sessions.

2.1. BIS/BAS scales

The BIS/BAS (Carver & White, 1994) is a widely used questionnaire with good psychometric properties that measures sensitivity to reward (BAS) and punishment (BIS). For the BIS scale, items reflect responses to potentially punishing events (e.g., “Criticism or scolding hurts me quite a bit”). BAS sensitivity is reflected in 3 empirically derived scales: Reward Responsiveness (e.g., “When I get something I want, I feel excited and energized”), Drive (e.g., “When I want something, I usually go all-out to get it”), and Fun Seeking (e.g., “I crave excitement and new sensations”). Individuals responded to items on a scale ranging from 1 (“I agree a lot”) to 5 (“I disagree a lot”). Item responses were averaged (with reversals as necessary), BIS M = 3.79, SD = .66, BAS Reward M = 4.36, SD = .46, BAS Drive M = 3.57, SD = .73, BAS Fun-seeking M = 3.81, SD = .72. Reliability was moderate to high in this sample, with alpha coefficients of .78 (BIS), .68 (Reward Responsiveness), .72 (Drive), and .71 (Fun Seeking).

2.2. Childhood adversity

Childhood adversity was measured using the self-report Risky Families scale (Taylor, Lerner, Sage, Lehman, & Seeman, 2004). Thirteen items assess early family environment characteristics such as the extent to which the respondent had felt loved and cared for (reversed); was insulted, was verbally or physically abused; or observed violence between family members. Item responses ranging from 1 (not at all) to 5 (very often or very much) were averaged (M = 1.82, SD = .57). The
measure correlates robustly with ratings from clinical interviews (Taylor et al., 2004). Scale scores have been found to interact with the 5-HTTLPR polymorphism to predict depressive symptoms (Carver, Johnson, Joormann, Kim, & Nam, 2011). Internal consistency was high in this sample, alpha = .86.

2.3. Genotyping

Genotyping was performed using standard techniques that have been described previously (Johnson, Carver, Joormann, & Cuccaro, 2015). Distributions of the allele frequencies for all polymorphisms are in Table 1. All distributions were in Hardy Weinberg equilibrium (Rodriguez, Gaunt, & Day, 2009) except for BDNF (χ² = 10.99, p < .001) and DRD2 (χ² = 4.23, p < .05). In both of these cases, fewer heterozygotes were observed than expected. Where less than 10% of persons were homozygous for rare alleles (including both of those polymorphisms), distributions were collapsed into two levels for analyses, with persons who were either homozygous or heterozygous for the rare variant considered as one level. SHTTLPR, TP1H, and COMT were examined as three levels.

2.4. Statistical analysis

One multilocus composite score was computed of dopamine-relevant polymorphisms (Nikolova et al., 2011) and another of serotonergic-relevant polymorphisms (Pearson et al., 2014). Both were created by summing the number of alleles identified in previous studies as “high risk” alleles across the relevant set of polymorphisms. The dopamine composite summarized DRD4, DRD2 c delete, and ANKK1 (M = 967, SD = 807, range = 0–3). The serotonergic composite included SHTTLPR, TP1H, TP1H2, HTR1B6 and HTR1B13 (M = 3.124, SD = 1.370, range = 0–7). Because BDNF and COMT exert effects beyond the dopamine system, these were examined separately. OPRM1 was also examined separately. High scores were assigned for the rare variants of BDNF and OPRM1, whereas for COMT, the Val allele was assigned a higher score. Composite scores were z-transformed. Interaction terms were created by multiplying centered Risk by the relevant genetic variable.

3. Results

Structural equation modeling (SEM) was used to examine the unique, concurrent associations of genetic variables with the BIS and the three BAS scores (Fig. 1). Early adversity (Risky Families scale), the serotonin composite, dopamine composite, COMT, OPRM1, and BDNF scores were tested as exogenous variables. Interactions of the 5 genetic scores with Risky Families were tested as well. SEM analyses were conducted using the AMOS SPSS 21.0.0 package with alpha = .05.

BIS and the three BAS scores were included as single indicators, as hypotheses differentiated the effects of genes on the BAS scales. Covariances were fit between the BIS/BAS scales, to account for the common method variance. The effects of gender and ethnicity (minority vs not) on the BIS and the three BAS scores were tested as potential control variables. Hu and Bentler (1999) recommended the cutoffs of comparative fit index (CFI) ≥ .95, root-mean-square error of approximation (RMSEA) ≤ .06, and standardized root-mean-square residual (SRMR) ≤ .08 as the criteria for a relatively good overall model fit. Based on these criteria, our model fits the data well (CFI = .99; RMSEA = .02; SRMR = .04). (Paths that were not included in the final model are not shown.) As shown in Fig. 1, women had higher BIS scores than men. Minority individuals had lower Reward Responsiveness and Drive scores than did non-minority individuals. After controlling for ethnicity and gender, BDNF was significantly related to BIS scores.

Although there were no significant direct effects of Risky Families or OPRM1 on Reward Responsiveness, the interaction of OPRM1 and Risky Families was significantly related to Reward Responsiveness. As shown in Fig. 2, among persons with at least one G allele on OPRM1, higher Risk was related to lower reward sensitivity, r = −.27, n = 101, p < .01. Risky Families was unrelated to Reward scores among those homozygous for AA, r = −.003, n = 242.

Multigroup analyses were conducted to test whether effects differed significantly by gender or ethnicity. Models were constructed separately by gender, and z-scores were constructed to compare the parameter estimates for each path in the model for males versus females. None of the z-scores differed significantly from each other. In parallel tests for minority versus non-minority groups, parameter estimates did not differ significantly by group. Effect sizes, then, did not differ significantly by gender or minority status.

4. Discussion

Although the BIS/BAS scales are widely used in psychopathology and neural research, little is known about genetic polymorphisms relevant to them. The current analyses provide one of the first polygenic examinations of BIS and BAS scores, and the first test of OPRM1 in relation to these scales. The findings are also relatively novel in jointly considering the roles of early adversity, ethnicity, and gender in tandem with polymorphisms.

Contrary to hypotheses, findings did not indicate associations of COMT, serotonergic or dopaminergic genes with BIS or BAS scales. Consistent with expectations, however, OPRM1 was related to one specific BAS scale—Reward Responsiveness—in interaction with early adversity. Previous research has suggested that early adversity correlates with diminished responsivity of the basal ganglia to reward anticipation (Dillon et al., 2009; Mehta et al., 2010). Our finding suggests that such an effect may be particularly likely among those with the G-allele of OPRM1. Current findings are novel, then, in providing evidence that the BAS Reward Responsiveness scale is related to variation in this gene, when considered in interaction with relevant environmental risk.

The BDNF met allele was positively related to BIS sensitivity. This finding fits with a series of previous reports relating the BDNF met allele to negative emotionality, specifically higher harm avoidance (Montag et al., 2010), increased HPA axis activation in response to threat (Shalev et al., 2009) and greater depression and anxiety (Domingos da Silveira da Luz et al., 2013; Hosang, Shiles, Tansey, McGuffin, & Uher, 2014). We did not find unique effects of BDNF on the BAS scales, though, despite previous research linking the met allele, to neural responsiveness to both positive and negative cues (Montag et al., 2008a, 2008b). This finding, then, adds to a growing body of research suggesting the importance of BDNF for reactivity to threat.

On the whole, then, findings suggest an effect of BDNF on threat sensitivity and of OPRM1 in interaction with early adversity in predicting reward sensitivity. Findings suggest the importance of a combined psychological and genetic approach to understanding reward and threat sensitivity.

Table 1

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Common</th>
<th>Heterozygous</th>
<th>Rare</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANKK1</td>
<td>212 (GG)</td>
<td>115</td>
<td>16 (AA)</td>
<td>343</td>
</tr>
<tr>
<td>BDNF</td>
<td>228 (val/val)</td>
<td>91</td>
<td>24 (met/met)</td>
<td>343</td>
</tr>
<tr>
<td>COMT</td>
<td>98 (val/val)</td>
<td>182</td>
<td>63 (met/met)</td>
<td>343</td>
</tr>
<tr>
<td>TP1H</td>
<td>131 (CC)</td>
<td>162</td>
<td>49 (AA)</td>
<td>342</td>
</tr>
<tr>
<td>TP1H2</td>
<td>193 (CC)</td>
<td>127</td>
<td>23 (AA)</td>
<td>343</td>
</tr>
<tr>
<td>OPRM1</td>
<td>242 (AA)</td>
<td>92</td>
<td>3 (GG)</td>
<td>343</td>
</tr>
<tr>
<td>DRD2 c-delete</td>
<td>250 (CC)</td>
<td>79</td>
<td>13 (del/del)</td>
<td>342</td>
</tr>
<tr>
<td>HTR1B1-6</td>
<td>182 (CC)</td>
<td>137</td>
<td>23 (GG)</td>
<td>342</td>
</tr>
<tr>
<td>HTR1B1-13</td>
<td>183 (TT)</td>
<td>133</td>
<td>26 (AA)</td>
<td>342</td>
</tr>
<tr>
<td>DRD4</td>
<td>230 (0)</td>
<td>95</td>
<td>15 (7-repeat)</td>
<td>340</td>
</tr>
<tr>
<td>SHTTLPR</td>
<td>103 (LL)</td>
<td>166</td>
<td>66 (5S)</td>
<td>335</td>
</tr>
</tbody>
</table>
In considering limitations, a primary concern is that our relatively small sample size limited our ability to detect correlations of less than .13 with a power of .80. Previous findings for polymorphisms relevant to BIS and BAS levels have been mixed, consistent with the view that effects are small. We were also underpowered for considering gene × gene interactions or ethnic variations. We also examined only a relatively small set of polymorphisms. As one example of polymorphisms to consider in future research, recent findings indicate that a polymorphism relevant to vasopressin is correlated with BIS scores (Reuter, Cooper, Smillie, Markett, & Montag, 2015).

Finally, the BIS/BAS scales were developed from an early version of Gray’s theory (Gray, 1987). A more recent version of that theory (Gray & McNaughton, 2000) more explicitly distinguishes the BIS from a fear system that guides fight or flight responses. Future research might consider using self-report measures that similarly distinguish the fear system from BAS and BIS (Jackson, 2009; Reuter et al., 2015).

Notwithstanding limitations, the current study also has strengths. It considers multiple genetic loci, in interaction with early adversity, as predictors of widely used scales. The findings are congruent with previous research with neural and behavioral paradigms, which have highlighted the importance of BDNF, early adversity, and OPRM1. As such, they provide additional support for the use of the BIS/BAS scales as a valid approach to assessing core dimensions of personality and psychopathology.

Conflict of interest

The authors have no conflicts of interest to report.

Acknowledgments

This work was made possible by seed funds associated with a University of Miami Distinguished Professorship. We are grateful to the staff at Hussman Institute for Human Genomics, particularly Joanna Konidari, who carried out the genotyping. We are also thankful to Jennifer Nam, who played a major role in coordinating data collection, to Matthias Siemer, who consulted regarding analyses, and to Jordan Tharp, who formatted the manuscript.

References

